Un segundo espectro del autismo: de la conducta a la neurona

Jorge Manzo Denes

Resumen


El trastorno del espectro autista es una alteración del desarrollo neural que se refleja en modificaciones significativas de la conducta infantil. En la versión más reciente del Manual Diagnóstico y Estadístico de Trastornos Mentales, se describe al autismo como un conjunto de modificaciones de la conducta que incluyen decremento en la interacción social, decremento en las habilidades de comunicación verbal o respuestas inapropiadas durante la conversación, manifestaciones de conductas repetitivas o estereotipadas, carencia de empatía para entablar relaciones afectivas y obsesiones inapropiadas sobre objetos específicos. Todo esto acompañado de una habilidad cognitiva que va desde altos niveles de inteligencia hasta alteraciones intelectuales severas. Por ello, ahora se reconoce al autismo como un abanico de conductas agrupadas bajo el concepto de Trastorno del Espectro Autista. Sin embargo, hay otros espectros, como aquel que está directamente relacionado con las bases neurales. En esta revisión se describen las diferentes metodologías para diagnosticar conductualmente al autismo, las comorbilidades que se presentan, las regiones del sistema nervioso central afectadas, y el papel que juegan las neuronas espejo y la glía; con ello se percibe que la etiología del autismo puede presentarse en alguna de estas regiones. A pesar de que los temas no son exhaustivos, tienen el propósito de proponer que el Trastorno del Espectro Autista, que se basa en la conducta, tiene un segundo espectro: aquel que va de la conducta a la neurona.

 

Abstract

The autism spectrum disorder is an alteration of the neural development manifested in significant modifications of the toddler behavior. In the most recent version of the Diagnostic and Statistical Manual of Mental Disorders, it is described that autism is a group of behavioral alterations which include decreased social interaction, decreased abilities for verbal communication or inappropriate responses during a conversation, repetitive or stereotyped behaviors, lack of empathy to establish affective relationships, and unappropriated obsessions for specific objects. All of this along with a cognitive ability ranging from higher levels of intelligence to severe intellectual disabilities. Therefore, autism is now recognized as a wide complex of behaviors grouped under the concept of Autism Spectrum Disorder. Notwithstanding, there is another spectrum, the one that is closely related with the neural basis. The present review deals with the different methodologies for the behavioral diagnosis of autism, the existing comorbidities, the affected regions at the central nervous system, and the role of mirror neurons and glia; data indicate that the etiology of autism could be in any of these regions. Although descriptions are not exhaustive, they had the aim to propose that the Autism Spectrum Disorder, based on behavioral information, has a second spectrum: those that goes from behavior to the neuron.

Keywords: Autism; neurodevelopment; comorbidity, ASD.


Palabras clave


Autismo; neurodesarrollo; comorbilidad; TEA.

Texto completo:

PDF

Referencias


Lorenz K. King Solomon’s ring: new light on animal ways. Routledge, London. 2002.

Tinbergen N. The study of instinct. Oxford University Press, Oxford. 1951.

American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Am Psych Assoc, Arlington. 2013.

Verhoeff B. Autism in flux: a history of the concept from Leo Kanner to DSM-5. Hist Psychiatry 2013 24: 442–458.

Kanner L. Autistic disturbances of affective contact. Nerv Child 1943 2: 217–250.

Wing L. Asperger’s syndrome: a clinical account. Psychol Med 1981 11: 115–129.

Barahona-Corrêa JB, Filipe CN. A concise history of Asperger syndrome: the short reign of a troublesome diagnosis. Front Psychol 2016 6: 2024.

Crespo CN, Garcia LI, Coria GA, Carrillo P, Hernandez ME, Manzo J. Mejora de las habilidades motoras y cognitivas de niños con autismo después de un periodo prolongado de juego con deportes virtuales. eNeurobiol 2016 7: 070716.

Altmann J. Observational study of behavior: sampling methods. Behaviour 1974 49: 227–266.

Pegoraro LFL, Setz EZF, Dalgalarrondo P. Ethological approach to autism spectrum disorders. Evol Psychol 2014 12: 223–244.

Coleman M, Gillberg C. The autisms. Oxford University Press, Oxford. 2012.

Baron-Cohen S, Wheelwright S, Cox A, Baird G, Charman T, Swettenham J, Drew A, Doehring P. Early identification of autism by the CHecklist for Autism in Toddlers (CHAT). J Roy Soc Med 2000 93: 521–525.

Baron-Cohen S, Allen J, Gillberg C. Can autism be detected at 18 months? The needle, the haystack, and the CHAT. Br J Psychiatry 1992 161: 839–843.

Robins DL, Fein D, Barton ML, Green JA. The modified checklist for autism in toddlers: an initial study investigating the early detection of autism and pervasive developmental disorders. J Autism Dev Disord 2001 31: 131–144.

Dahlgren SO, Gillberg C. Symptoms in the first two years of life. A preliminary population study of infantile autism. Eur Arch Psychiatry Neurol Sci 1989 238: 169–174.

Johnson MH, Siddons F, Frith U, Morton J. Can autism be predicted on the basis of infant screening tests? Dev Med Child Neurol 1992 34: 316–320.

Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, Schopler E. Austism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 1989 19: 185–212.

Le Couteur A, Rutter M, Lord C, Rios P, Robertson S, Holdgrafer M, McLennan J. Autism diagnostic interview: a standardized investigator-based instrument. J Autism Dev Disord 1989 19: 363–387.

Wing L, Leekam SR, Libby SJ, Gould J, Larcombe M. The diagnostic interview for social and communication disorders: background, inter‐rater reliability and clinical use. J Child Psychol Psychiatry 2002 43: 307–325.

Gotham K, Bishop L, Lord C. Diagnosis of autism spectrum disorders. En: Amaral DG, Dawson G, Geschwind D, Autism spectrum disorders. Oxford University Press, New York 2011 30–43.

Rutter M, Bailey A, Lord C. Social communication questionnaire. Western Psychological Services 2003.

Ruggeri B, Sarkans U, Schumann G, Persico AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl) 2013 231: 1201–1216.

Sukhodolsky DG, Bloch MH, Panza KE, Reichow B. Cognitive-behavioral therapy for anxiety in children with high-functioning autism: a meta-analysis. Pediatrics 2013 132: e1341-e1350.

Evans DW, Canavera K, Kleinpeter. FL, Maccubbin E, Taga K. The fears, phobias and anxieties of children with autism spectrum disorders and Down syndrome: comparisons with developmentally and chronologically age matched children. Child Psychiatry Hum Dev 2005 36: 3–26.

Rumsey J, Rapoport J, Sceery W. Autistic children as adults: psychiatric, social, and behavioral outcomes. J Am Acad Child Psychiatry 1985 24: 465–473.

Tyson KE, Cruess DG. Differentiating high-functioning autism and social phobia. J Autism Dev Disord 2012 42: 1477–1490.

Sigman M, Ungerer JA. Attachment behaviors in autistic children. J Autism Dev Disord 1984 14: 231–244.

Mayes SD, Calhoun SL, Mayes RD, Molitoris S. Autism and ADHD: overlapping and discriminating symptoms. Res Autism Spectr Disord 2012 6: 277–285.

Cortesi F, Giannotti F, Ivanenko A, Johnson K. Sleep in children with autistic spectrum disorder. Sleep Med 2010 11: 659–664.

Devnani PA, Hegde AU. Autism and sleep disorders. J Pediatr Neurosci 2015 10: 304–307.

Buckley AW, Rodriguez AJ, Jennison K, Buckley J, Thurm A, Sato S, Swedo S. Rapid eye movement sleep percentage in children with autism compared with children with developmental delay and typical development. Arch Pediatr Adolesc Med 2010 164: 1032–1037.

Rossignol DA, Frye RE. Melatonin in autism spectrum disorders. Curr Clin Pharmacol 2014 9: 326–334.

Malow B, Adkins KW, McGrew SG, Wang L, Goldman SE, Fawkes D, Burnette C. Melatonin for sleep in children with autism: a controlled trial examining dose, tolerability, and outcomes. J Autism Dev Disord 2012 42: 1729–1737.

Porter AE, Glaze DG. Sleep problems. En: Amaral DG, Dawson G, Geschwind D, Autism spectrum disorders. Oxford University Press, New York 2011 431–444.

Rosenfeld CS. Microbiome disturbances and autism spectrum disorders. Drug Metab Dispos 2015 43: 1557–1571.

Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect 2012 18: 2–4.

Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: a review. J Vet Intern Med 2018 32: 9–25.

Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017 11: 120.

Buie T. Potential etiologic factors of microbiome disruption in autism. Clin Ther 2015 37: 976–983.

Tuchman R, Rapin I. Epilepsy in autism. Lancet Neurol 2002 1: 352–358.

Canitano R. Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 2007 16: 61–66.

Turk J, Bax M, Williams C, Amin P, Eriksson M, Gillberg C. Autism spectrum disorder in children with and without epilepsy: impact on social functioning and communication. Acta Paediatr 2009 98: 675–681.

Viscidi EW, Johnson AL, Spence SJ, Buka SL, Morrow EM, Triche EW. The association between epilepsy and autism symptoms and maladaptive behaviors in children with autism spectrum disorder. Autism 2014 18: 996–1006.

Meier SM, Petersen L, Schendel DE, Mattheisen M, Mortensen PB, Mors O. Obsessive-compulsive disorder and autism spectrum disorders: longitudinal and offspring risk. PLoS One 2015 10: e0141703.

Taylor BP, Hollander E. Comorbid obsessive-compulsive disorders. En: Amaral DG, Dawson G, Geschwind D, Autism spectrum disorders. Oxford University Press, New York 2011 270–284.

Ghaziuddin M, Tsai LY, Ghaziuddin N. Brief report: haloperidol treatment of trichotillomania in a boy with autism and mental retardation. J. Autism Dev Disord 1991 21: 365–371.

Hamdan-Allen G. Brief report: Trichotillomania in an autistic male. J. Autism Dev Disord 1991 21: 79–82.

Fombonne E, Rogé B, Claverie J, Courty S, Frémolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999 29: 113–119.

Chawarska K, Campbell D, Chen L, Shic F, Klin A, Chang J. Early generalized overgrowth in boys with autism. Arch Gen Psychiatry 2011 68: 1021–1031.

Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005 62: 1366–1376.

Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci 2008 31: 137–145.

Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002 59: 184–192.

Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N. Effects of age on brain volume and head circumference in autism. Neurology 2002 59: 175–183.

Carper RA, Moses P, Tigue ZD, Courchesne E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002 16: 1038–1051.

Fernández V, Llinares‐Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016 35: 1021–1044.

Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW. Cortical sulcal maps in autism. Cereb Cortex 2003 13: 728–735.

Lacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 2006 7: 942–951.

Kates WR, Ikuta I, Burnette CP. Gyrification patterns in monozygotic twin pairs varying in discordance for autism. Autism Res 2009 2: 267–278.

Nordahl CW, Dierker D, Mostafavi I, Schumann CM, Rivera SM, Amaral DG, Van Essen DC. Cortical folding abnormalities in autism revealed by surface-based morphometry. J Neurosci 2007 27: 11725–11735.

Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J Neurosci 2010 30: 14595–14609.

Watanabe H, Nakamura M, Ohno T, Itahashi T, Tanaka E, Ohta H, Yamada T, Kanai C, Iwanami A, Kato N, Hashimoto R. Altered orbitofrontal sulcogyral patterns in adult males with high-functioning autism spectrum disorders. Soc Cogn Affect Neurosci 2014 9: 520–528.

Hoon AH, Reiss AL. The mesial‐temporal lobe and autism: case report and review. Dev Med Child Neurol 1992 34: 252–259.

Eyler LT, Pierce K, Courchesne E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain 2012 135: 949–960.

Chi RP, Snyder AW. Treating autism by targeting the temporal lobes. Med Hypotheses 2014 83: 614–618.

Wallace GL, Dankner N, Kenworthy L, Giedd JN, Martin A. Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain 2010 133: 3745–3754.

Knaus TA, Tager-Flusberg H, Foundas AL. Sylvian fissure and parietal anatomy in children with autism spectrum disorder. Behav Neurol 2012 25: 327–339.

Pantelis PC, Byrge L, Tyszka JM, Adolphs R, Kennedy DP. A specific hypoactivation of right temporo-parietal junction/posterior superior temporal sulcus in response to socially awkward situations in autism. Soc Cogn Affect Neurosci 2015 10: 1348–1356.

Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci 1983 6: 414–417.

DeRamus TP, Black BS, Pennick MR, Kana RK. Enhanced parietal cortex activation during location detection in children with autism. J Neurodev Disord 2014 6: 37.

Tootell RBH, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM. Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci 1998 95: 811–817.

Rinehart NJ, Bradshaw JL, Moss SA, Brereton A V, Tonge BJ. Atypical interference of local detail on global processing in high‐functioning autism and Asperger’s disorder. J Child Psychol Psychiatry 2000 41: 769–778.

Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, Baker CI. Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain 2014 137: 2588–2599.

Kemner C, Verbaten MN, Cuperus JM, Camfferman G, Engeland VH. Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalogr Clin Neurophysiol Potentials Sect 1994 92: 225–237.

Leisman G, Melillo R. The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci 2013 24: 9–25.

Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012 2: a009621.

Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, Kaphzan H, Klann E. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 2012 493: 411–415.

Qiu T, Chang C, Li Y, Qian L, Xiao CY, Xiao T, Xiao X, Xiao YH, Chu KK, Lewis MH, Ke X. Two years changes in the development of caudate nucleus are involved in restricted repetitive behaviors in 2–5-year-old children with autism spectrum disorder. Dev Cogn Neurosci 2016 19: 137–143.

Langen M, Durston S, Staal WG, Palmen SJMC, Engeland VH. Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 2007 62: 262–266.

Sato W, Kubota Y, Kochiyama T, Uono S, Yoshimura S, Sawada R, Sakihama M, Tpichi M. Increased putamen volume in adults with autism spectrum disorder. Front Hum Neurosci 2014 8: 957.

Shafritz KM, Bregman JD, Ikuta T, Szeszko PR. Neural systems mediating decision-making and response inhibition for social and nonsocial stimuli in autism. Prog Neuro- Psychopharmacology Biol Psychiatry 2015 60: 112–120.

Schuetze M, Park MTM, Cho IYK, MacMaster FP, Chakravarty MM, Bray SL. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacol 2016 41: 2627.

Bedogni F, Hodge RD, Nelson BR, Frederick EA, Shiba N, Daza RA, Hevner RF. Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology. Gene Expr Patterns 2010 10: 9–15.

Park HR, Lee JM, Moon HE, Lee DS, Kim B-N, Kim J, Kim DG, Paek SH. A short review on the current understanding of autism spectrum disorders. Exp Neurobiol 2016 25: 1–13.

Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubies S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017 134: 537–566.

Zalla T, Sperduti M. The amygdala and the relevance detection theory of autism: an evolutionary perspective. Front Hum Neurosci 2013 7: 894.

Chaddad A, Desrosiers C, Hassan L, Tanougast C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci 2017 18: 52.

Cooper RA, Richter FR, Bays PM, Plaisted-Grant KC, Baron-Cohen S, Simons JS. Reduced hippocampal functional connectivity during episodic memory retrieval in autism. Cereb Cortex 2017 27: 888–902.

Codagnone MG, Podestá MF, Uccelli NA, Reinés A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev Neurosci 2015 37: 215–231.

Silvestrin RB, Bambini-Junior V, Galland F, Bobermim LD, Santos AQ, Abib RT, Zanotto C, Batassini C, Brolese G, Goncalves CA, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res 2013 1495: 52–60.

Micheau J, Vimeney A, Normand E, Mulle C, Riedel G. Impaired hippocampus‐dependent spatial flexibility and sociability represent autism‐like phenotypes in GluK2 mice. Hippocampus 2014 24: 1059–1069.

Hardan AY, Girgis RR, Adams J, Gilbert AR, Keshavan MS, Minshew NJ. Abnormal brain size effect on the thalamus in autism. Psychiatry Res Neuroimaging 2006 147: 145–151.

Nair A, Treiber JM, Shukla DK, Shih P, Müller R-A. Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 2013 136: 1942–1955.

Beversdorf DQ, Nordgren RE, Bonab AA, Fischman AJ, Weise SB, Dougherty DD, Felopulos GJ, Zhou FC, Bauman ML. 5-HT2 receptor distribution shown by [18F] setoperone PET in high-functioning autistic adults. J Neuropsychiatry Clin Neurosci 2012 24: 191–197. 94.

Ray MA, Graham AJ, Lee M, Perry RH, Court JA, Perry EK. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus. Neurobiol Dis 2005 19: 366–377.

Haznedar MM, Buchsbaum MS, Hazlett EA, LiCalzi EM, Cartwright C, Hollander E. Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. Am J Psychiatry 2006 163: 1252–1263.

Wolfe FH, Auzias G, Deruelle C, Chaminade T. Focal atrophy of the hypothalamus associated with third ventricle enlargement in autism spectrum disorder. Neuroreport 2015 26: 1017.

Kurth F, Narr KL, Woods RP, O’Neill J, Alger JR, Caplan R, McCracken JT, Toga AW, Levitt JG. Diminished gray matter within the hypothalamus in autism disorder: a potential link to hormonal effects? Biol Psychiatry 2011 70: 278–282.

Spratt EG, Nicholas JS, Brady KT, Carpenter LA, Hatcher CR, Meekins KA, Furlanetto RW, Charles JM. Enhanced cortisol response to stress in children in autism. J Autism Dev Disord 2012 42: 75–81.

Romano A, Tempesta B, Bonaventura MVM Di, Gaetani S. From autism to eating disorders and more: the role of oxytocin in neuropsychiatric disorders. Front Neurosci 2016 9: 497.

Peñagarikano O, Lázaro MT, Lu X-H, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 2015 7: 271ra8.

Kirsten TB, Bernardi MM. Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: Repetitive self-grooming and stereotypies. Behav Brain Res. 2017 331: 25–29.

Anderson GM, Scahill L, McCracken JT, McDougle CJ, Aman MG, Tierney E, Arnold LE, Martin A, Katsovich L, Posey DJ, Shah B, Vitiello B. Effects of short- and long-term risperidone treatment on prolactin levels in children with autism. Biol Psychiatry 2007 61: 545–550.

Hernández ME, del Mar Hernández M, Díaz-Muñoz M, Clapp C, Martinez de la Escalera G. Potentiation of Prolactin Secretion following Lactotrope Escape from Dopamine Action. Neuroendocrinology 1999 70: 31–42.

Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 1997 7: 269–278.

Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988 318: 1349–1354.

Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci 2004 24: 9228–9231.

Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP. Consensus paper: pathological




DOI: https://doi.org/10.25009/eb.v10i23.2539

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.