Neurogénesis cerebral, socialización del miedo y farmacología implicada en el trastorno de estrés postraumático: evidencia de investigación en animales y humanos
Resumen
A pesar de que cualquier individuo está expuesto a eventos traumáticos, solo algunos llegan a desarrollar el trastorno de estrés postraumático (TEPT). Este trastorno afecta diferentes ámbitos, volviéndose incapacitante a nivel personal, social, laboral y fisiológico. Aunque se desconocen las causas que llevan a la adquisición del TEPT y a su mantenimiento o superación, se han planteado algunas hipótesis biológicas que podrían explicar la predisposición de una persona a desarrollar el trastorno (por ej: neurogénesis), o por otro lado, plantear hipótesis sobre la importancia del apoyo social, la comunicación de emociones y tratamientos farmacológicos implementados en el tratamiento del TEPT y la extinción de los síntomas relacionados con el miedo para favorecer la superación del trauma. En el presente artículo se expone el resultado de una revisión de la evidencia que surge a partir de investigaciones con modelos animales, así como de estudios clínicos que abordan este trastorno desde diferentes perspectivas.
Abstract: Even though anyone can be exposed to traumatic events, only some people develop posttraumatic stress disorder (PTSD). This disorder can affect in a variety of ways and become a problem at physiological, personal, social and occupational levels, among others. Although the causes that lead to the development, maintenance and/or overcoming of PTSD are unknown, some biological hypotheses have been proposed that could potentially explain an individual’s predisposition to develop the disorder (e.g.: neurogenesis). On the other hand, there are many studies that address the importance of social support, the communication of emotional states and the use of pharmacotherapy in PTSD treatment, in order to extinguish fear-related symptoms with the main objective of eventually overcoming the trauma. The present article exposes a review of the available evidence originated from research in animal models, as well as clinical studies that approach this disorder from different perspectives.
Keywords: PTSD; neurogenesis; ultrasonic vocalizations; pharmacology; extinction; social support.
Palabras clave
Texto completo:
PDFReferencias
Cohen H, Zohar J. An Animal Model of Posttraumatic Stress Disorder: The Use of Cut‐Off Behavioral Criteria. Ann N Y Acad Sci 2004 1032: 167-78.
Kheirbek MA, Klemenhagen KC, Sahay A, Hen R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat neurosci 2012 15: 1613-20.
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of general psychiatry 2005 62 (6), 593-602.
American Psychiatric Association. DSM-5. Manual Diagnóstico y Estadístico de los Trastornos Mentales. Washington, D.C.: Editorial Médica Panamericana 2013.
VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 2014 113: 3-18.
Olff M. Bonding after trauma: On the role of social support and the oxytocin system in traumatic stress. Eur J Psychotraumatol 2012 3: 10.3402/ejpt.v3i0.18597
Olsson A, Phelps EA. Social learning of fear. Nat neurosci 2007 10: 1095-102.
Jovanovic T, Ely T, Fani N, Glover EM, Gutman D, Tone EB, Ressler KJ. Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample. Cortex 2013 49: 1884-91.
Kong E, Monje FJ, Hirsch J, Pollak DD. Learning not to fear: neural correlates of learned safety. Neuropsychopharmacology 2014 39: 515-27.
Wöhr M, Scattoni ML. Behavioural methods used in rodent models of autism spectrum disorders: current standards and new developments. Behav Brain Res 2013 251: 5-17.
Burgdorf J, Kroes RA, Moskal JR, Pfaus JG, Brudzynski SM, Panksepp J. Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: Behavioral concomitants, relationship to reward, and self-administration of playback. J Comp Psychol 2008 122: 357-67.
Anacker, C., & Hen, R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci 2017 18(6), 335.
Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?. Nat Rev Neurosci 2010 11: 339-50.
Aimone JB, Deng W, Gage FH. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 2011 70: 589-96.
Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat neurosci 2006 9: 723-27.
Blanchard RJ, Blanchard DC, Agullana R, Weiss SM. Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol Behav 1991 50: 967-72.
Wöhr M, Schwarting RK. Ultrasonic communication in rats: can playback of 50-kHz calls induce approach behavior?. PloS One 2007 2: e1365.
Akirav, I., Maroun, M. The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast 2007 doi: 10.1155/2007/30873
Fendt M, Fanselow MS. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 1999 23: 743-60.
Fanselow MS, Ponnusamy R. The use of conditioning tasks to model fear and anxiety. En: Manahan-Vaughan D, Handbook of Behavioral Neuroscience. Academic Press 2008 17: 29-48.
Pietersen C, Bosker F, Postema F, Den Boer J. Fear conditioning and shock intensity: the choice between minimizing the stress induced and reducing the number of animals used. Lab Anim 2006 40: 180-5.
Zeggio L, Monteiro K, Lima T, Vecchio R, Menezes MG. Interaction between glutamatergic-NMDA and cholinergic-muscarinic systems in classical fear conditioning. Brain Res Bull 2008 77: 71-6.
LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000 23: 155-84.
Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 2001 24: 897-931. International Publishing 2015 67-89.
Brudzynski SM. Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 2013 23: 310-7.
Wöhr M, Engelhardt KA, Seffer D, Sungur AÖ, Schwarting RK. Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socio-affective signals. En: Wöhr M and Krach S, Social Behavior from Rodents to Humans. Springer International Publishing 2015 67-89.
Endres T, Widmann K, Fendt M. Are rats predisposed to learn 22 kHz calls as danger-predicting signals?. Behav Brain Res 2007 185: 69-75.
Schwarting RK, Jegan N, Wöhr M. Situational factors, conditions and individual variables which can determine ultrasonic vocalizations in male adult Wistar rats. Behav Brain Res 2007 182: 208-22.
Brudzynski SM. Principles of rat communication: quantitative parameters of ultrasonic calls in rats. Behav Genet, 2005 35: 85-92.
Chen X, Li Y, Li S, Kirouac GJ. Early fear as a predictor of avoidance in a rat model of post-traumatic stress disorder. Behav Brain Res 2012 226: 112–117.
Simola N. Rat Ultrasonic Vocalizations and Behavioral Neuropharmacology: From the Screening of Drugs to the Study of Disease. Curr Neuropharmacol 2015 13: 164-79.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018 46: D1074-82. Disponible en: https://doi.org/10.1093/nar/gkx1037.
Jelen P, Soltysik S, Zagrodzka J. 22-kHz ultrasonic vocalization in rats as an index of anxiety but not fear: behavioral and pharmacological modulation of affective state. Behav Brain Res 2003 141: 63-72. Disponible en: http://dx.doi.org/10.1016/S0166-4328(02)00321-2
Stein DJ, Ipser JC, Seedat S, Sager C, Amos T. Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst Rev 2006 (1) Disponible en: 10.1002/14651858.CD002795.pub2.
Carey P, Suliman S, Ganesan K, Seedat S, Stein DJ. Olanzapine monotherapy in posttraumatic stress disorder: efficacy in a randomized, double-blind, placebo-controlled study. Hum Psychopharmacol 2012 27: 386-91.
Bremner JD, Vermetten E. Neuroanatomical Changes Associated with Pharmacotherapy in Posttraumatic Stress Disorder. Ann N Y Acad Sci 2004 1032: 154–7.
Ipser JC, Stein DJ. Evidence-based pharmacotherapy of post-traumatic stress disorder (PTSD). Int J Neuropsychopharmacol 2012 15: 825–40. Disponible en: https://doi.org/10.1017/S1461145711001209
Steele III FF, Whitehouse SC, Aday JS, Prus AJ. Neurotensin NTS1 and NTS2 receptor agonists produce anxiolytic-like effects in the 22-kHz ultrasonic vocalization model in rats. Brain Res 2017 1658: 31–5.
Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Neurotensin regulates cortical glutamate transmission by modulating N-methyl-D-aspartate receptor functional activity: an in vivo microdialysis study. J Neurosci Res 2011 89: 1618–26.
Hirsch D, Zukowska Z. NPY and Stress 30 Years Later: The Peripheral View. Cell Mol Neurobiol 2012 32: 645-59. Disponible en: https://doi.org/10.1007/s10571-011-9793-z
Serova LI, Tillinger A, Alauf LG, Laukova M, Keegan K, Sabban EL. Single Intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 2013 236: 298–312.
Krystal JH, Neumeister A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res 2009 1293: 13-23.
Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabbann EL. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 2014 24: 142–7.
Desai SJ, Borkar CD, Nakhate KT, Subhedar NK, Kokare DM. Neuropeptide Y attenuates anxiety- and depression-like effects of cholecystokinin-4 in mice. Neuroscience 2014 277: 818-30.
Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999 160: 1–12.
Kehne JH, Coverdale S, McCloskey TC, Hoffman DC, Cassella JV. Effects of the CRF1 receptor antagonist, CP 154,526, in the separation-induced vocalization anxiolytic test in rat pups. Neuropharmacology 2000 39: 1357–67.
Ramírez-Rodríguez G, Laguna-Chimal J, Vega-Rivera N, Ortiz-López L, Méndez-Cuesta L, Estrada-Camarena E, Babu H. Los fármacos antidepresivos como reguladores de la neurogénesis hipocámpica de roedores y humanos adultos. Salud Ment 2011 34: 497-506.
Viar Fogaça M, Galve-Roperh I, Silveira Guimarães F, Campos AC. Cannabinoids, Neurogenesis and Antidepressant Drugs: Is there a Link?. Curr Neuropharmacol 2013 11: 263-75.
Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol psychiatry 2003 54: 693-702.
Jibson MD. First-generation antipsychotic medications: Pharmacology, administration, and comparative side effects. En: UpToDate, Post TW (Ed), Waltham, MA. (Accesado en Julio 09, 2018.)
Jibson MD. Second-generation antipsychotic medications: pharmacology, administration, and side effects. En: UpToDate, Post TW (Ed), Waltham, MA. (Accesado en Julio 09, 2018.)
Peng Z, Zhang R, Wang H, Chen Y, Xue F, Wang L, Yang F, Chen Y, Liu L, Kuang F, Tan Q. Ziprasidone ameliorates anxiety-like behaviors in a rat model of PTSD and up-regulates neurogenesis in the hippocampus and hippocampus-derived neural stem cells. Behav Brain Res 2013 244: 1–8.
Wang HD, Dunnavant FD, Jarman T, Deutch AY. Effects of Antipsychotic Drugs on Neurogenesis in the Forebrain of the Adult Rat. Neuropsychopharmacology 2004 29: 1230–8.
Andres-Mach M, Haratym-Maj A, Zagaja M, Rola R, Maj M, Chroscinska-Krawczyk M, Luszczki JJ. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs. Brain Res 2015 1624, 86–94.
Loflin MJ, Babson KA, Bonn-Miller MO. Cannabinoids as therapeutic for PTSD. Curr Opin Psychol 2017 14: 78-83. Disponible en: https://doi.org/10.1016/j.copsyc.2016.12.001.
Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 2005 81: 331 – 42.
Ganasen KA, Ipser JC, Stein DJ. Augmentation of cognitive behavioral therapy with pharmacotherapy. Psychiatr Clin North Am 2010 33: 687-99.
Quirk G, Paré D, Richardson R, Herry C, Monfils M, Schiller D, Vicentic A. Erasing fear memories with extinction training. J Neurosci 2010 30 14993-7.
Graham BM, Milad MR. The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 2011 168: 1255-65.
Milad MR, Rosenbaum BL, Simon NM. Neuroscience of fear extinction: implications for assessment and treatment of fear-based and anxiety related disorders. Behav Res Ther 2014 62: 17-23.
Myers KM, Davis M. Mechanisms of fear extinction. Mol psychiatry 2007 12: 120-50.
Fiorenza NG, Rosa J, Izquierdo I, Myskiw JC. Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behav Brain Res 2012 232: 210-6.
Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 2007 53: 871-80.
Liu JL, Li M, Dang XR, Wang ZH, Rao ZR, Wu SX, Li YQ, Wang W. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model. PLoS One 2009 4: e7548.
Walker DL, Ressler KJ, Lu KT, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 2002 22: 2343-51.
Brunton LL, Hilal-Dandan R, Knollmann BC. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics. McGraw-Hill Education, New York. 2018. Accesible en: https://accesspharmacy.mhmedical.com/
Difede J, Cukor J, Wyka K, Olden M, Hoffman H, Lee FS, Altemus M. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. Neuropsychopharmacology, 2014 39: 1052-8.
Figley C. Encyclopedia of trauma. SAGE, Thousand Oaks. 2012 pp 789-90.
Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B, Davis M, Bradley B, Duncan EJ, Rizzo A, Ressler KJ. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am J Psychiatry 2014 171: <640-8 class="x">
Inslicht S, Niles A, Metzler T, Milad M, Orr SP, Marmar C, Neylan T. S14. Randomized Controlled Trial of Hydrocortisone and D-Cycloserine on Fear Extinction in PTSD. Biol Psychiatry 2018 83: S352.
Akirav I, Raizel H, Maroun M. Enhancement of conditioned fear extinction by infusion of the GABAA agonist muscimol into the rat prefrontal cortex and amygdala. Eur J Neurosci 2006 23: 758-64.
Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 2011 36: 529-38.
Thompson BM, Baratta MV, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. Activation of the infralimbic cortex in a fear context enhances extinction learning. Learn Mem 2010 17: 591-9.
Chang CH, Maren S. Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learn Mem 2011 18: 221-5
Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 2010 35: 1625-52.
Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. Baclofen administration alters fear extinction and GABAergic protein levels. Neurobiol Learn Mem 2012 98 (3): 261-71.
Zhang J, Tan L, Ren Y, Liang J, Lin R, Feng Q, Zhou J, Hu F, Ren J, Wei C, Yu T, Zhuang Y, Bettler B, Wang F, Luo M. Presynaptic excitation via GABAB receptors in habenula cholinergic neurons regulates fear memory expression. Cell 2016 166: 716-28.
Maren S, Holmes A. Stress and fear extinction. Neuropsychopharmacology 2016 41: 58.
Joëls M, Fernández G, Roozendaal B. Stress and emotional memory: a matter of timing. Trends Cogn Sci 2011 15: 280-8.
Holmes A, Quirk GJ. Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders-the case of yohimbine. Trends Pharmacol Sci 2010 31: 2-7.
Smits JA, Rosenfield D, Davis ML, Julian K, Handelsman PR, Otto MW, Tuerk P, Shiekh M, Rosenfield B, Hoffman SG, Powers MB. Yohimbine enhancement of exposure therapy for social anxiety disorder: a randomized controlled trial. Biol Psychiatry 2014 75: 840-6.
Meyerbroeker K, Powers MB, Van Stegeren A, Emmelkamp PM. Does yohimbine hydrochloride facilitate fear extinction in virtual reality treatment of fear of flying? A randomized placebo-controlled trial. Psychother Psychosom 2012 81: 29-37.
Tuerk PW, Wangelin BC, Powers MB, Smits JA, Acierno R, Myers US, Orr SP, Foa EB, Hamner MB. Augmenting treatment efficiency in exposure therapy for PTSD: a randomized double-blind placebo-controlled trial of yohimbine HCl. Cogni Behav Ther 2018: 351-71.
Jia M, Smerin SE, Zhang L, Xing G, Li X, Benedek D, Ursano R, Li H. Corticosterone mitigates the stress response in an animal model of PTSD. J Psychiatr Res 2015 60: 29-39.
Roozendaal B, Okuda S, De Quervain DF, McGaugh JL. Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions. Neuroscience, 2006 138: 901-10.
Dominique JF, Aerni A, Schelling G, Roozendaal B. Glucocorticoids and the regulation of memory in health and disease. Fron Neuroencocrin 2009 30: 358-70.
Yang YL, Chao PK, Lu KT. Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology, 2006 31: 912-24.
Yang YL, Chao PK, Ro LS, Wo YYP, Lu KT. Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmacology 2007 32: 1042-51.
Liu JF, Yang C, Deng JH, Yan W, Wang HM, Luo YX, Luo YX, Shi HS, Meng SQ, Chai BS, Fang Q, Chai N, Xue YX, Sun J, Chen C, Wang XY, Wang JS, Lu L. Role of hippocampal β-adrenergic and glucocorticoid receptors in the novelty-induced enhancement of fear extinction. J Neurosci 2015 35: 8308-21.
Surís A, North C, Adinoff B, Powell CM, Greene R. Effects of exogenous glucocorticoid on combat-related PTSD symptoms. Ann Clin Psychiatry 2010 22: 274-9.
Surís A, Holliday R, Adinoff B, Holder N, North CS. Facilitating Fear-Based Memory Extinction With Dexamethasone: A Randomized Controlled Trial in Male Veterans With Combat-Related PTSD. Psychiatry 2017 80: 399-410.
Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology, 2005 30: 516-24.
Pamplona FA, Bitencourt RM, Takahashi RN. Short-and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol Learn Mem, 2008 90: 290-3.
Gunduz-Cinar O, Flynn S, Brockway E, Kaugars K, Baldi R, Ramikie TS, et al. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids. Neuropsychopharmacology. 2015 41:1598-609.
Busquets-Garcia A, Puighermanal E, Pastor A, de la Torre R, Maldonado R, Ozaita A. Differential Role of Anandamide and 2-Arachidonoylglycerol in Memory and Anxiety-like Responses. Biol Psychiatry. 2011 70:479 - 86.
Hartley ND, Gunduz-Cinar O, Halladay L, Bukalo O, Holmes A, Patel S. 2-arachidonoylglycerol signaling impairs short-term fear extinction. Transl Psychiatry 2016 6:e749.
Jenniches I, Ternes S, Albayram O, Otte DM, Bach K, Bindila L, Michel K, Lutz B, Bilkei-Gorzo A, Zimmer A. Anxiety, Stress, and Fear Response in Mice With Reduced Endocannabinoid Levels. Biol Psychiatry. 2016 79:858 - 68.
Cavener VS, Gaulden A, Pennipede D, Jagasia P, Uddin J, Marnett LJ, et al. Inhibition of Diacylglycerol Lipase Impairs Fear Extinction in Mice. Front Neurosci. 2018 12:479.
Kliumpers F, Denys D, Kenemans JL, Grillon C, van der Aart J, Baas JM. Testing the effects of Δ9-THC and D-cycloserine on extinction of conditioned fear in humans. J Psychopharmacol 2012 26: 471-8.
Rabinak CA, Angstadt M, Sripada CS, Abelson JL, Liberzon I, Milad MR, Phan KL. Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology 2013 64:396-402.
Rabinak CA, Angstadt M, Lyons M, Mori S, Milad MR, Liberzon I, Phan KL. Cannabinoid modulation of prefrontal–limbic activation during fear extinction learning and recall in humans. Neurobiol Learn Mem 2014 113: 125-34.
Feduccia AA, Mithoefer MC. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms? Prog Neuropsychopharmacol Biol Psychiatry 2018 84: 221-8.
Schenk S, Newcombe D. Methylenedioxymethamphetamine (MDMA) in Psychiatry. J Clin Psychopharmacol 2018 38: 632–638.
Young MB, Andero R, Ressler KJ, Howell LL. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl Psychiatry 2015 5:e634.
Hake HS, Davis JKP, Wood RR, Tanner MK, Loetz EC, Sanchez A, et al. 3,4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats. Physiol Behavi 2019 199:343-50.
McCann UD, Ricaurte GA. Effects of MDMA on the Human Nervous System. En: Madras B y Kuhar M, The Effects of Drug Abuse on the Human Nervous System. Boston: Academic Press 2014 475-97.
Weber G, Johnson B, Yamamoto B, Gudelsky G. Effects of Stress and MDMA on Hippocampal Gene Expression. Biomed Res Int 2014 2014. doi: 10.1155/2014/141396
Curry DW, Young MB, Tran AN, Daoud GE, Howell LL. Separating the agony from ecstasy: R(–)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology 2018 128:196-206.
Mithoefer, MC, Jerome, L, Ruse, JM. MDMA-assisted psychotherapy for the treatment of posttraumatic stress disorder: A revised teaching manual draft. 2011. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.377.8045&rep=rep1&type=pdf (accesado 3 de julio, 2019)
Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF, Yazar-Klosinski B, et al. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol 2013 27: 28-39.
Mithoefer, M., Mithoefer, A., Feduccia, A., Jerome, L., Wagner, M., & Wymer, J. et al. 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for post-traumatic stress disorder in military veterans, firefighters, and police officers: a randomised, double-blind, dose-response, phase 2 clinical trial. The Lancet Psychiatry, 2018 5(6): 486-497. doi: 10.1016/s2215-0366(18)30135-4
Mithoefer, M., Wagner, M., Mithoefer, A., Jerome, L., Martin, S., & Yazar-Klosinski, B. et al. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. Journal Of Psychopharmacology, 2012 27(1), 28-39. doi: 10.1177/0269881112456611
Wei W, Coelho CM, Li X, Marek R, Yan S, Anderson S, Bredy TW. p300/CBP-associated factor selectively regulates the extinction of conditioned fear. J Neurosci 2012 32: 11930-41.
Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, Tsai LH. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 2013 79: 1109-22.
Lattal KM, Wood MA. Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat neurosci 2013 16: 124-9.
Whittle N, Singewald N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 2014: 569-81.
Fujita Y, Morinobu S, Takei S, Fuchikami M, Matsumoto T, Yamamoto S, Yamawaki S. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. J Psychiatr Res 2012 46: 635-43.
Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA., Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci 2007 27: 6128-40.
Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res 2019 1711:183-92.
Hait NC, Wise LE, Allegood JC, O'brien M, Avni D, Reeves TM, Knapp PE, Lu J, Luo C, Miles MF, Milstien S, Lichtman AH, Spiegel S. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci 2014 17: 971-80.
Whittle N, Schmuckermair C, Cinar OG, Hauschild M, Ferraguti F, Holmes A, Singewald N. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model. Neuropharmacology 2013 64: 414-23.
Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 2007 14: 268-276.
Bredy TW, Barad M. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn Mem 2008 15: 39-45.
Bahari-Javan S, Maddalena A, Kerimoglu C, Wittnam J, Held T, Bähr M, Sananbenesi F. HDAC1 regulates fear extinction in mice. J Neurosci 2012 32: 5062-73.
Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Finn PW. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 2008 409: 581-9.
Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Bradner JE. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009 459: 55-60.
McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Wood MA. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011 31: 764-74.I
DOI: https://doi.org/10.25009/eb.v10i24.2546
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.