Neurotherapy for Alzheimer's disease

Gonzalo Emiliano Aranda Abreu

Resumen


Una de las mayores compañías farmacéuticas del mundo aparentemente no continuará investigando y desarrollando nuevos medicamentos contra la enfermedad de Alzheimer. Esta situación dejará a millones de personas en una situación vulnerable. Los medicamentos aprobados para el tratamiento de la enfermedad no han sido viables y los pacientes siempre vuelven a los síntomas de la enfermedad. Soy de la idea de una terapia principalmente farmacológica, usando medicamentos ya aprobados que podrían retrasar la enfermedad de Alzheimer o aliviar algunos de los síntomas de la enfermedad. Esta terapia consiste en rehabilitar el cerebro de la persona con Alzheimer, para que posteriormente los fármacos, como los inhibidores de la acetilcolinesterasa y la memantina, actúen adecuadamente en las neuronas, haciendo más efectivo el tratamiento indicado por los neurólogos. Esta terapia no es costosa y podría ayudar al paciente a tener una mejor calidad de vida. Prácticamente he discutido el potencial translacional de varios medicamentos que han sido probados experimentalmente.


Abstract: One of the world's largest pharmaceutical companies apparently will not continue research and development of new drugs against Alzheimer's disease. This situation will leave millions of people in a vulnerable situation. Drugs approved for the treatment of the disease have not been viable and patients always return to the symptoms of the disease. I am of the idea of a primarily pharmacological therapy, using already approved medications that could delay Alzheimer's disease or alleviate some of the symptoms of the disease. This therapy consists of rehabilitating the brain of the person with Alzheimer's, so that later, the drugs, such as acetylcholinesterase inhibitors and memantine act adequately in the neurons, making the treatment indicated by neurologists more effective. This therapy is not expensive and could help the patient to lead a better quality of life. I practically discussed the translational potential of various drugs that have been tested experimentally.

Keywords: Alzheimer's disease; medications; neuroinflammation; therapy.



Palabras clave


Enfermedad de Alzheimer; medicamentos; neuroinflamación; terapia.

Texto completo:

PDF HTML

Referencias


Matt N. Pfizer Halts Drug Research For Alzheimer’s and Parkinson’s Because It’s Too Expensive. 2018.

Association A. 2017 Alzheimer´s Disease Facts and Figures. 2017.

Tsuno N. Donepezil in the treatment of patients with Alzheimer’s disease. Expert Rev Neurother. 2009;9(5):591-598.

Winblad B. Donepezil in severe Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2009;24(3):185-192.

Matharu B et al. Galantamine inhibits beta-amyloid aggregation and cytotoxicity. J Neurol Sci. 2009;280(1-2):49-58.

Melo JB, Sousa C, Garção P, Oliveira CR, Agostinho P. Galantamine protects gainst oxidative stress induced by amyloid-beta peptide in cortical neurons. Eur J Neurosci. 2009;29(3):455-464.

Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2009;(2):CD001191.

Lo D, Grossberg GT. Use of memantine for the treatment of dementia. Expert Rev Neurother. 2011;11(10):1359-1370.

Stanciu GD et al. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules. 2019;10(1).

Kamkwalala AR, Newhouse PA. Beyond Acetylcholinesterase Inhibitors: Novel Cholinergic Treatments for Alzheimer’s Disease. Curr Alzheimer Res. 2017;14(4):377-392.

Kračmarová A, Drtinová L, Pohanka M. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors. Acta Medica (Hradec Kralove). 2015;58(2):37-42.

Poirier J. Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int J Clin Pract Suppl. 2002;(127):6-19.

Stix G. Turbocharging the brain. Sci Am. 2009;301(4):46-9, 52.

Terwel D, Dewachter I, Van Leuven F. Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neuromolecular Med. 2002;2:151-165.

Baird FJ, Bennett CL. Microtubule defects & Neurodegeneration. J Genet Syndr Gene Ther. 2013;4:203.

Calkins MJ, Reddy PH. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta. 2011;1812(4):507-513.

Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse. Neuropharmacology. 2007;53(6):699-723.

Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res. 2002;958(1):210-221.

Möbius HJ. Pharmacologic rationale for memantine in chronic cerebral hypoperfusion, especially vascular dementia. Alzheimer Dis Assoc Disord. 1999;13 Suppl 3:S172-8.

Jain KK. Evaluation of memantine for neuroprotection in dementia. Expert Opin Investig Drugs. 2000;9(6):1397-1406.

Daubert EA, Condron BG. Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci. 2010;33(9):424-434.

Verma S, Kumar A, Tripathi T, Kumar A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol. 2018

Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel H, Faull RL, Kwakowsky A. The GABAergic System as a Therapeutic Target for Alzheimer’s Disease. J Neurochem. 2018

Lazarov O et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell. 2005;120(5):701-713.

Baldelli MV, Boiardi R, Ferrari P, Bianchi S, Bianchi MH. Dementia and occupational therapy. Arch Gerontol Geriatr. 2007;44 Suppl 1:45-48.

Serdà i Ferrer BC, del Valle A. A rehabilitation program for Alzheimer’s disease. J Nurs Res. 2014;22(3):192-199.

McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging. 2001;22(6):799-809.

Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918-934.

Candelario-Jalil E. Nimesulide as a promising neuroprotectant in brain ischemia: new experimental evidences. Pharmacol Res. 2008;57(4):266-273.

Fernandez-Perez EJ, Peters C, Aguayo LG. Membrane Damage Induced by Amyloid Beta and a Potential Link with Neuroinflammation. Curr Pharm Des. 2016;22(10):1295-1304.

Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016;12(6):719-732.

Scali C, Prosperi C, Vannucchi MG, Pepeu G, Casamenti F. Brain inflammatory reaction in an animal model of neuronal degeneration and its modulation by an anti-inflammatory drug: implication in Alzheimer’s disease. Eur J Neurosci. 2000;12(6):1900-1912.

Krause DL, Müller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimers Dis. 2010;2010

McGeer PL, McGeer EG. Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin Ther Targets. 2015;19(4):497-506.

Shaftel SS, Griffin WS, O’Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7.

Medeiros R, LaFerla FM. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol. 2013;239:133-138.

Bernareggi A. The pharmacokinetic profile of nimesulide in healthy volunteers. Drugs. 1993;46 Suppl 1:64-72.

Donati M et al. Risk of acute and serious liver injury associated to nimesulide and other NSAIDs: data from drug-induced liver injury case-control study in Italy. Br J Clin Pharmacol. 2016;82(1):238-248.

Peters ME et al. Citalopram for the Treatment of Agitation in Alzheimer Dementia: Genetic Influences. J Geriatr Psychiatry Neurol. 2016;29(2):59-64.

Ren QG, Gong WG, Wang YJ, Zhou QD, Zhang ZJ. Citalopram attenuates tau hyperphosphorylation and spatial memory deficit induced by social isolation rearing in middle-aged rats. J Mol Neurosci. 2015;56(1):145-153.

Fredericson Overø K, Toft B, Christophersen L, Gylding-Sabroe JP. Kinetics of citalopram in elderly patients. Psychopharmacology (Berl). 1985;86(3):253-257.

Wang J et al. Potential application of grape derived polyphenols in huntington’s disease. Transl Neurosci. 2010;1(2):95-100.

Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta. 2015;1852(6):1202-1208.

YKaragiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease. Pathobiol Aging Age Relat Dis. 2012;2

Wong RH, Nealon RS, Scholey A, Howe PR. Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2016;26(5):393-399.

Vanhanen M, Soininen H. Glucose intolerance, cognitive impairment and Alzheimer’s disease. Curr Opin Neurol. 1998;11(6):673-677.

Aranda-Abreu GE, Hernández-Aguilar ME, Manzo Denes J, García Hernández LI, Herrera Rivero M. Rehabilitating a brain with Alzheimer’s: a proposal. Clin Interv Aging. 2011;6:53-59.

Bourre JM. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging. 2004;8(3):163-174.

Valentine RC, Valentine DL. Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res. 2004;43(5):383-402.

Schwarz C et al. Effects of Omega-3 Fatty Acids on Resting Cerebral Perfusion in Patients with Mild Cognitive Impairment: A Randomized Controlled Trial. J Prev Alzheimers Dis. 2018;5(1):26-30.

Hooper C et al. Cognitive Changes with Omega-3 Polyunsaturated Fatty Acids in Non-Demented Older Adults with Low Omega-3 Index. J Nutr Health Aging. 2017;21(9):988-993.

Field BH, Vadnal R. Ginkgo biloba and Memory: An Overview. Nutr Neurosci. 1998;1(4):255-267.

Zhang HF et al. An Overview of Systematic Reviews of Ginkgo biloba Extracts for Mild Cognitive Impairment and Dementia. Front Aging Neurosci. 2016;8:276.

Beck SM et al. Effects of Ginkgo biloba extract EGb 761® on cognitive control functions, mental activity of the prefrontal cortex and stress reactivity in elderly adults with subjective memory impairment - a randomized double-blind placebo-controlled trial. Hum Psychopharmacol. 2016;31(3):227-242.

Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res. 2012;46(6):716-723.




DOI: https://doi.org/10.25009/eb.v11i27.2557

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.