MicroRNAs and autism spectrum disorder: small tools for a complex disorder

Jesús Antonio Lara-Reyes, Alejandra Llanes-Duran, Gonzalo Emiliano Aranda-Abreu, María Elena Hernández-Aguilar, Fausto Rojas-Durán

Resumen


El trastorno del espectro autista (TEA) abarca un grupo complejo de trastornos del desarrollo neural que se caracterizan por presentar deficiencias en la interacción social, la comunicación y motricidad del individuo. El TEA tiene un impacto en la salud pública, por lo que sería de gran utilidad contar con biomarcadores que permitan la identificación temprana del trastorno. En este sentido, los microRNAs (miRNAs), que son reguladores de una gran variedad de funciones celulares y cuyas alteraciones en su expresión han sido observadas en individuos con TEA, se comienzan a considerar como blancos potenciales para el desarrollo de estrategias de diagnóstico y terapéuticas para estos trastornos. Esta revisión se enfoca en algunos estudios sobre la participación de miRNAs en el TEA, en modelos animales y humanos, y hace una aproximación a su posible uso como biomarcadores.


Abstract: The autism spectrum disorder (ASD) includes a complex group of neural development disorders that are characterized by deficiencies in social interaction, communication, and motor skills of individuals. ASD has an impact on public health, so it would be very useful to have biomarkers that allow early identification of the disorder. In this sense, microRNAs (miRNAs), which are regulators of a wide variety of cellular functions and whose alterations in their expression have been observed in individuals with ASD, are beginning to be considered as potential targets for the development of diagnostic and therapeutic strategies for these disorders. This review focuses on some studies about the participation of miRNAs in ASD in animal models, as well as in humans, and makes an approach to their possible use as biomarkers.

Keywords: MicroRNAs; autism spectrum disorder; biomarker.


Palabras clave


MicroRNAs; trastorno del espectro autista; biomarcadores.

Texto completo:

PDF (English) HTML (English)

Referencias


Christodoulatos GS, Dalamaga M. Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncol 2014 5: 71–81.

Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function Review. Cell 2004 116: 281–97.

Arberas C, Ruggieri V. Autismo y epigenética. Un modelo de explicación para la comprensión de la génesis en los trastornos del espectro autista. Med (B Aires) 2013 73: 20–9.

Manzo-Denes J. Un segundo espectro del autismo: de la conducta a la neurona A second spectrum for autism: from behavior to the neuron. 2019 10: 1–20.

Rogel-Ortiz FJ. Autismo. Gac Med Mex 2005 141: 143–7.

Rajman M, Schratt G. microRNAs in neural development: from master regulators to fine-tuners. Development 2017 144: 2310–22.

Lau NC, Lim LP, Weistein EG, Bartel DP. An abundant class of tiny RNAs with probably regulatory roles in Caenorhabditis elegans. Science 2001 294: 858–62.

Duarte F V, Palmeira CM, Rolo AP. The emerging role of MitomiRs in the pathophysiology of human disease. En: Santulli G. microRNA: Medical Evidence, Springer 2015: 123-154.

Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, DiRienzo M. Prevalence of autism spectrum disorder among children aged 8 years - Autism and developmental disabilities monitoring network, 11 Sites, United States, 2016. MMWR Surveill Summ 2020 69: 1–12.

Fombonne E, Marcin C, Manero AC, Bruno R, Diaz C, Villalobos M, Ramsay K, Nealy B. Prevalence of Autism Spectrum Disorders in Guanajuato, Mexico: The Leon survey. J Autism Dev Disord 2016 46: 1669–85.

Stewart J, Vigil D. Refining best practices for the diagnosis of autism: A comparison between individual healthcare practitioner diagnosis and transdisciplinary assessment. Nevada J Public Heal 2014 11: 1–12.

Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol 2018 60: 445–51.

Ramaswami G, Geschwind DH. Genetics of autism spectrum disorder. En: Geschwind DH PAulson HL, Klein C. Handbook of Clinical Neurology. Elsevier B.V 2018: 321–329.

Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013 251: 95–112.

Meek SE, Lemery-Chalfant K, Jahromi LB, Valiente C. A review of gene–environment correlations and their implications for autism: A conceptual model. Psychol Rev 2013 120: 497–521.

Aqeilan RI, Calin GA, Croce CM. MiR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death Differ 2010 17: 215–20.

Fregeac J, Colleaux L, Nguyen LS. The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci Biobehav Rev 2016 71: 729–38.

Blenkiron C, Miska EA. miRNAs in cancer : approaches , aetiology , diagnostics and therapy. 2007 16: 106–13.

Kozomara A, Griffiths-Jones S. MiRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011 39: 152–7.

Sehovic E, Spahic L, Smajlovic-Skenderagic L, Pistoljevic N, Dzanko E, Hajdarpasic A. Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS One 2020 15: 1–18.

Abe M, Bonini NM. MicroRNAs and neurodegeneration: Role and impact. Trends Cell Biol 2013 23: 30–6.

Chan AWS, Kocerha J. The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 2012 3: 1–10.

Ruiz R, Garrido E, Velázquez-flores MÁ. Nuevos e inesperados mecanismos de biogénesis y acción de los microRNAs. 2016 35: 55–70.

Bushati N, Cohen SM. MicroRNA functions. Annu Rev Cell Dev Biol 2007 23: 175–205.

Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009 136: 215–33.

Piletič K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol 2016 90: 2405–19.

Fabbri M, Calore F, Paone A, Galli R, Calin GA. Epigenetic Regulation of miRNAs in Cancer. Epigenetic Alterations Oncog 2012 754: 137–48.

Van den Hove DL, Kompotis K, Lardenoije R, Kenis G, Mill J, Steinbusch HW, Lesch P, Fitzsimons CP, De Strooper B, Rutten BPF. Epigenetically regulated microRNAs in Alzheimer ’ s disease. Neurobiol aging 2014 35: 731–45.

Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression : An Overview of Nuclear Functions. 2016 17.

Liu J, Carmell MA, Rivas F V, Marsden CG, Michael J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004 305: 1437–41.

He L, Hannon GJ. MicroRNAs : small RNAs with a big role in gene regulation. Nat Rev Genet 2004 5: 522–31.

Place RF, Li L, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with. Proc Natl Acad Sci 2018 115: 1608–13

Salloum-Asfar S, Satheesh NJ, Abdulla SA. Circulating miRNAs, Small but Promising Biomarkers for Autism Spectrum Disorder. Front Mol Neurosci 2019 12: 1–10.

Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. HHS Public Access. 2016 56: 1733–41.

Cao D, Li L, Chan W. MicroRNAs : Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016 17: 1–28.

Faravelli I, Corti S. MicroRNA-Directed Neuronal Reprogramming as a Therapeutic Strategy for Neurological Diseases. Mol Neurobiol 2018 55: 4428–36.

Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, et al. Serum microRNA profiles in children with autism. Mol Autism 2014 5: 1–9.

Schepici G, Cavalli E, Bramanti P, Mazzon E. Autism spectrum disorder and mirna: An overview of experimental models. Brain Sci 2019 9: 1–16.

Valluy J, Bicker S, Aksoy-aksel A, Lackinger M. A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat Neurosci 2015 18: 666–73.

Lackinger M, Sungur AÖ, Daswani R, Soutschek M, Bicker S, Stemmler L, et al. A placental mammal-specific microRNA cluster acts as a natural brake for sociability in mice. EMBO Rep 2019 20: 1–11.

Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 2015 6: 1–11.

Nguyen LS, Lepleux M, Makhlouf M, Martin C, Fregeac J, Siquier-Pernet K, et al. Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism 2016 7: 1–13.

Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res 2008 1: 240–50.

Popov NT, Madjirova NP, Minkov IN. Micro RNA HSA-486-3P Gene Expression Profiling in the Whole Blood of Patients with Autism. Biotechnol Biotechnol Equip 2012 26: 3385–8.

Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K. miRNA-132: A dynamic regulator of cognitive capacity. Brain Struct Funct 2013 218: 817–31.

Vaishnavi V, Manikandan M, Tiwary BK, Munirajan AK. Insights on the Functional Impact of MicroRNAs Present in Autism-Associated Copy Number Variants. PLoS One 2013 8: 1–13.

Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, et al. Advances in roles of miR-132 in the nervous system. Front Pharmacol 2017 8: 1–9.

Hara Y, Ago Y, Takano E, Hasebe S, Nakazawa T, Hashimoto H, et al. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Mol Autism 2017 8: 1–9.

Almehmadi KA, Tsilioni I, Theoharides TC. SHORT REPORT Increased Expression of miR-155p5 in Amygdala of Children With Autism Spectrum Disorder. 2019 00:1–6.

Dieter Edbauer, Neilson JR, Foster KA, Wang C-F, Seeburg DP, Batterton MN, et al. Regulation of synaptic structure and function by FMRP- associated. Neuron 2010 65: 373–84.

Hirsch MM, Deckmann I, Fontes-Dutra M, Bauer-Negrini G, Della-Flora Nunes G, Nunes W, et al. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA. Food Chem Toxicol 2018 115: 336–43.

Siegel G, Obernosterer G, Fiore R, Oehmen M, Christensen M, Khudayberdiev S, et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis Gabriele. Nat Cell Biol 2013 11: 705–16.

Dai X, Yin Y, Qin L. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat. Neurosci Lett 2017 657: 159–65.

Olde Loohuis NFM, Kole K, Glennon JC, Karel P, Borg G Van der, Gemert Y Van, et al. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis 2015 80: 42–53.

Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 2016 16: 1–11.

Hyman SL, Levy SE, Myers SM, Children ON, Disabilities W. Identification , Evaluation , and Management of Children With Autism Spectrum Disorder. Pediatrics 2020 145.

Narayanan R, Schratt G. miRNA regulation of social and anxiety ‑ related behaviour. Cell Mol Life Sci 2020.

Ozkul Y, Taheri S, Bayram KK, Sener EF, Ecmel M, Öztop DB, et al. A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 2020 10.

Fregeac J, Colleaux L, Nguyen LS. The emerging roles of MicroRNAs in Autism Spectrum Disorders. Neurosci Biobehav Rev 2016 71: 730–38.

Rooij E van, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014 6: 851–64.




DOI: https://doi.org/10.25009/eb.v11i28.2562

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.