The effect of using kefir grains and mesenchymal stem cells in LPS-induced Alzheimer’s disease neuroinflammatory model

Mai M. Anwar, Ola S. M. Ali, Laila Ahmed R., Badawi A. M., Nadia A. Eltablawy

Resumen


La enfermedad de Alzheimer (EA) se caracteriza por una acumulación severa de placas amiloides y ovillos neurofibrilares acompañados de disfunciones cognitivas severas que conducen a cambios importantes que afectan la calidad del patrón de vida diaria del paciente. El objetivo del presente estudio es investigar los efectos de la administración de células madre mesenquimales (MSC) y/o granos de kéfir de leche en el modelo de tipo neuroinflamatorio de EA inducida por LPS de manera alternativa. Se observó que una elevación significativa del perfil lipídico y el estrés oxidativo estaban relacionados con EA de tipo neuroinflamatoria inducida con LPS. La expresión del gen BDNF, Bcl-2 y seladin-1 también se redujo significativamente en ratas con EA, mientras que la expresión relativa de Bax aumentó significativamente. La administración de granos de kéfir de leche y/o MSC suprimió los inconvenientes de la EA incluyendo cambios de comportamiento y memoria. Conclusión: La administración previa y la coadministración de granos de kéfir de leche con MSC pueden actuar como un neuromodulador activo que atenúa el proceso inflamatorio patológico subyacente que acompaña a la EA, lo que resulta en la progresión de daños en el tejido cerebral.

 

Abstract: Alzheimer’s disease (AD) is characterized by severe accumulation of amyloid plaques and neurofibrillary tangles accompanied with cognitive dysfunction leading to major changes affecting the quality of patient daily life pattern. Objective: To investigate the effect of MSCs and/or milk kefir grains in LPS –induced AD in female albino rats in alternating manner. Materials and Methods: Sixty female albino rats were divided into equal six groups (ten rats each): group 1: healthy control; group 2: LPS-induced AD; group 3: LPS-induced AD rats received single intravenous injection of MSCs; group 4: LPS-induced AD rats received oral milk kefir; group 5: LPS-induced AD rats received a single intravenous injection of MSCs with a daily milk kefir grain administration for a month; group 6: Rats received kefir for one week prior to the induction of AD followed by a single intravenous injection of MSCs with a daily milk kefir grain administration for a month. AD was assessed by T maze behavioural test month after induction. Brain tissue was collected for monitoring BDNF, Bax, Bcl-2 and seladin-1 gene expression with the measurement of TNF-α, IL-10 and tissue cholesterol. Plasma lipid profile, GSH and MDA were also determined. Results: Revealed that significant elevation of lipid profile and oxidative stress in association with LPS-induction. BDNF, Bcl-2 and seladin-1 gene expression were significantly reduced in AD while Bax mRNA gene was significantly increased. Administration of kefir and /or MSCs suppressed LPS –induced AD. Conclusion: The pre and co-administration of kefir with MSCs could act as a potent modulator attenuating the underling pathological inflammatory process accompanying AD which results in the progression of brain damage.

Keywords: Alzheimer's disease; MSCs; kefir grains; LPS; Bax; BDNF; Seladin-1.


Palabras clave


Enfermedad de Alzheimer; neuroinflamación; MSC; granos de kéfir; LPS; Bax; BDNF; Seladin-1.

Texto completo:

PDF HTML

Referencias


Danborg, P.B., Simonsen, A.H., Waldemar, G., and Heegaard, N.H. The potential of micro-RNAs as biofluid markers of neurodegenerative diseases a systematic review. Biomarkers. 2014 19:259-268.

Kim, D.H., Yeo, S.H., Park, J.M., Choi, J. Y., Lee, T. H., Park, S.Y., Ock, M.S., Eo, J., Kim, H.S., and Cha, H.J. Genetic markers for diagnosis and pathogenesis of Alzheimer’s disease. Gene. 2014 545:185-193.

Bonda, D.J., Lee, H. G., Camins, A., Pallas, M., Casadesus, G., Casadesus, G., Smith, M. A., and Zhu, X. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol. 2011 10:275-279.

Demetrius, L.A., and Driver, J. Alzheimer’s as a metabolic disease. Biogeront-ology.2013 14:641-649.

Dineley, K.T., Jahrling, J.B., and Denner,L. Insulin resistance in Alzheimer’s disease. Neurobiology Disease. 2014 72:92-103.

Femminella, G.D. and Edison,P. Evaluation of neuroprotective effect of glucagon-like peptide1analogs using neuroimaging. Alzheimer’s Dementia.2013 10:55-61.

Femminella, G.D., Rengo, G., Komici, K., Iacotucci, P., Petraglia, L., Pagano, G., de Lucia, C., Canonico, V., Bonaduce, D., Leosco, D., and Ferrara, N. Autonomic dysfunctionin Alzheimer’s disease: tools for assessment and review of the literature. J. Alzheimer’s Dis.2014 42:369-377.

Casserly, I., and Topol, E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet.2014 363:1139–46.

Griffin, W.S.T., Hampel, Harald., Hull, Michael., Landreth, Gary., Lue, Lih–Fen., Mrak, Robert., Mackenzie, Ian R., McGeer, Patrick L., O’Banion, M. Kerry., Pachter, Joel., Pasinetti, Guilio., Salaman, Carlos Plata., Rogers, Joseph., Rydel, Russell., Shen, Yong., Streit, Wolfgang., Strohmeyer, Ronald., Tooyoma,Ikuo., Muiswinkel, Freek L., Veerhuis, Robert., Walker, Douglas., Webster, Scott., Wegrzyniak, Beatrice., Wenk, Gary., and Wyss-Coray, T. Inflammation and Alzheimer's disease. Neurobiology of aging.2000 21:383–421.

Shimizu, T., Smits, R.,and Ikenaka, K. Microglia-Induced Activation of Noncanonical Wnt Signaling Aggravates Neurodegeneration in Demyelinating Disorders. Molecular and cellular biology. 2016 36:2728-2741.

Pappolla, M.A., Smith, M.A., Bryant-Thomas, T., Bazan, N., Petanceska, S.,and Perry, G. Cholesterol, oxidative stress, and Alzheimer’s disease: expanding the horizons of pathogenesis. Free Radical Biol Med. 2002 33:173–181.

Ebert, A.D., Beres, A.J., Barber, A.E., and Svendsen, C.N. Human neural progenitor cells overexpressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. ExpNeurol.2008 209:213-223.

Lu, P., Jones, L.L., Snyder, E.Y. and Tuszynski, M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. ExpNeurol.2003 181:115-129.

Park, K.I., Himes, B.T., Stieg, P.E., Tessler, A., Fischer, I., synder, E.Y. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement:Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxicischemic brain injury. Exp Neurol. 2006 199:179-190.

Babaei, P., Soltani-Tehrani, B.,and Alizadeh, A. Transplanted Bone Marrow Mesen-chymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease. Stem Cells International. 2012: 369417:1-8.

Zaki, O.S., Safar, M.M., Ain-Shoka, A.A.,and Rashed, LA. Bone Marrow Mesenc-hymal Stem Cells Combat Lipopolysaccharide-Induced Sepsis in Rats via Amendment of P38-MAPK Signaling Cascade. Inflammation.2018 41:541-545.

Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science. 2016 353: 777-783.

Miklossy, J. Chronic inflammation and amyloidogenesis in Alzheimer’s disease Role of Spirochetes. J.Alzheimer’s Dis. 2008 13:381-391.

Sheng, J.G.; Bora, S.H.; Xu, G.; Borchelt, D.R.; Price, D.L., and Koliatsos, V.E. Lipopolysaccharide-induced neuroinflammatoin increases intracellular accumulation of amyl-oid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol. Dis.2003 14:133-145.

Bossù, P., Cutuli, D., Palladino, I., Caporali, P., Angelucci, F., Laricchiuta, D., and Petrosini, L. A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18. Journal of neuroinflammation. 2012 9:101-101.

Lee, B., Shim, I., and Lee, H. Gypenosides Attenuate Lipopolysaccharide-Induced Neuroinflammation and Memory Impairment in Rats. Evidence-based complementary and alternative medicine. 2018 4183: 670-672.

Rodrigues, K.L., Carvalho, J.C.T., and Schneedorf, J.M. Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology.2005 13:485-492.

Micheli, L., Uccelletti, D., Palleschi, C., and Crescenzi, V. Isolation and characteri-zation of a ropy Lactobacillus strain producing the exopolysaccharidekefiran, Appl. Microbiol. Biotechnol.1999 53:69-74.

Sharifi, M., Moridnia, A., Mortazavi, D., Salehi, M., Bagheri, M., and Sheikhi, A. kefir: a powerful probiotics with anticancer properties. Medical oncology.2017 34 :183-185.

Jaiswal, N., Haynesworth, S.E., Caplan, A.I. and Bruder, S.P. Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry.1997 64: 295-312.

Liu, J., Wang, S. Lin, Y., and Lin, C. Antitumor Activity of Milk kefir and Soy Milk kefir in Tumor-Bearing Mice; Nutrition and cancer.2009 44:182-187.

Nesrine S. El Sayed., Lobna A. Kassem. and Ola A. Heikal. Promising therapy for Alzheimer's disease targeting angiotensin converting enzyme and the cyclooxygense-2 isoform. Drug DiscovTher.2009 3:307-313

Babaei. P., Soltani, T.B., and Alizadeh, A. Transplanted Bone Marrow mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's disease. Stem Cells International.2012 369417:8.

Shoji, H., Hagihara, H., Takao, K.,Hattori, S.,and Miyakawa, T. T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in mice. J Vis Exp.2012 26:3300.

Bradford, M. A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1974 72:248-252.

Flegg, H. An investigation for determination of serum Cholesterol by an enzyme method, Ann. Clin Biochem. 1973 10:79-84.

Buccolo, G., and David, H. Quantitative determination of serum triglyceride by the use of enzymes Clin. Chem.1973 19:476-482.

Finley, P., Schifman, R., Williams, R., Lichi, D. Cholesterol in High-Density Lipoprotein:Use of Mg2 /Dextran sulfate in its enzymes measurement. Clin.Chem.1978 24 :931-933.

Friedewald, W.T., Levy, R.T. and Frederickson, D.S. Estimation of concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem.1973 18:499-502.

Beulter, E., Duron, O., and Kelly, B. Improved method for determination of blood glutathione. J Lab. Clin.Med.1963 61:882-888.

Beuge, J. and Aust, S. Microsomal lipid peroxidation. Methods Enzymol.1987 12: 461-67.

Bancroft, J.D., Stevens, A., Turner, D.R. Theory and practice of histological techniques.1994: 25-90.

Neirinckx, V., Coste, C., Rogister, B., and Wislet-Gendebien, S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med.2013 2:284-296.

Amemori, T., Jendelova, P., Ruzicka, J., Urdzikova, L. M., and Sykova, E.Alzheimer's disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci.2015 16: 26417-26451.

Choi, S. S., Lee, S., Kim, S. U. and Lee, H. J. Alzheimer’s disease and Stem Cell Therapy.2014 23:45-52.

Ahmed, Z., Wang, Y., Ahmad, A., Khan, S.T., Nisa, M., Ahmad, H. and Afreen, A. kefir and health: a contemporary Schabitz perspective. Critical reviews in food science and nutrition.2013: 53 422-434.

Garrote, G. L., Abraham, A. G., and De Antoni, G. L.Microbial Interactions in kefir: a Natural Probiotic Drink,” in Biotechnology of Lactic Acid Bacteria - Novel Applications. 2010 :327-340.

Monje, M. L., Toda, H. and Palmer, T. D.Inflammatory blockade restores adult hippocampal neurogenesis. Science.2010 302:1760-1765.

Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z. and Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. ProcNatlAcad.2003 100:13632-13637.

Lee, R.H., Pulin, A.A., Seo, M.J., Kota, D.J., Ylostalo, J., Larson, B.L.,Semprun-Prieto, L., Delafontaine, P.,and Prockop, D.J. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell.2009 5:54–63.

Van Velthoven, C.T., Kavelaars, A. and van Bel, F. Mesenchymal stem cell trans- plantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav. Immun.2011 25:1342-1350.

Kokaia, Z., Martino, G., Schwartz, M. and Olle, Lindvall. Cross-talk between neural stemcells and immune cells: the key to better brain repair? Nat. Rev. Neurosci.2012 15:1078–1087.

Chir, A. I., Iskender, A., Erdem, H., Ankatali, H. and Kandis, H. The early anti-inflammatory effect of kefir in experimental corrosive esophagitis. Ann Ita lChir.2013 84: 681-685.

Gravel, C., Götz, R., Lorrain, A. and Sendtner M. Adenoviral gene transfer of ciliaryneurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med.1997 3:765–770.

Thoenen, H. Neurotrophins and neuronal plasticity. Science.1995 270:593-598.

Cheng, H., Wu, J.P. and Tzeng, S.F. Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res.2002 69: 397405.

Jin, K., LaFevre-Bernt M, Sun, Y., Chen, S., Gafni, J., Crippen, D., Logvinova, A., Ross, C.A., Greenberg, D.A.,and Ellerby, L.M. FGF-2 promotes neurogenesis and neuroprotection and Prolongs survival in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci.2005 102:18189-18194.

Schabitz, W.R., Sommer, C., Zoder, W., Kiessling, M., Schwaninger, M. and Schwab, S. Intravenous brain-derived neurotrophic factor reduces infarct size and counter regulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke.2005 31:2212-2217.

Wang, P., Xie, Z.H. and Guo, Y.J. VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse model of Alzheimer's disease. Biochemical and Biophysical Research Communications.2011 411:620-626.

Chen, X., Li, Y., Wang, L., Katakowski, M., Zhang, L., Chen, J., Xu, Y., Gautam, S.C. and Chopp, M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology.2002 22:275-279.

Jiang, J., Lv, Z., Gu, Y., Li, J., Xu, L., Xu, W., Lu, J.,and Xu, J. Adult rat mesenchymal stem cells differentiate into neuronal- like phenotype and express a variety of neuro-regulatory molecules in vitro. Neuroscience Res.2010 66:46-52.

Labouyrie, E., Dubus, P., Groppi, A. and Mahon, FX., Ferrer, J., Parrens, M., Reiffers, J., De Mascarel, A.,and Merlio, JP. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol.1999 154:405–415.

58. Neuhuber, B., Gallo, G., Howard, L., Kostura, L., Mackay, A. and Fischer, I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res.2004 77:192-204.

Bercik, p., Verdu, E.F., Foster, J.A., Macri, J., Potter, M., Huang, X., Malinowski, P., Jackson, W., Blennerhassett, P., Neufeld, K.A., Lu, J., Khan, W.I., Corthesy-Theulaz, I., Cherbut, C., Bergonzelli, G.E.,and Collins S.M. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology.2010 139:2102-2112.

Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., Macqueen, G. and Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut.2010 60:307-317.

Ostrovskaya, R.U., Gruden, M.A., Bobkova, N.A., Sewell, R.D. and Gudasheva, T.A. The nootropic and neuro protective proline-containing dipeptide noopept restores spatial memory and increases immune reactivity to amyloid in an Alzheimer's disease model. J Psychopharmacol. 2007 21:611-619.

Jin, G., Qiu, G., Wu, D., Hu, Y., Qiao, P., Fan, C. and Gao, F. Allogeneic bone marrow-derived mesenchymal stem cells attenuate hepatic ischemia-reperfusion injury by suppressing oxidative stress and inhibiting apoptosis in rats. Int J Mol Med.2013 31:1395-1401.

Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T. and Shirahata, S. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser- 46phosphorylated. Cell.2000 102:849-862.

Greeve, I.,Hermans-Borgmeyer, I., Brellinger, C.,Kasper, D., Gomez-Isla, T., Behl, C., Levkau, B., Nitsch, R.M. The human Diminto/Dwarf1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J Neurosci.2000 20:7345-7352.

Iivonen, S., Hiltunen, M., Alafuzoff, I., Mannermaa, A., Kerokoski, P., Puoliva, li.J., Salminen, A., Helisalmi, S.,and Soininen, H. Seladin-1 transcription is linked to neuronal degeneration in Alzheimer’s disease. Neuroscience.2002 113:301-310.

Di Stasi, D., Vallacchi, V., Campi, T., Ranzani, M., Daniotti, E., Chiodini,S., Fiorentini, I., Greeve, A., Prinetti, L., Rivoltini, M. A., Pierotti, M.A.,and Rodolfo,M.DHCR24 gene expression is up regulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. Int. J. Cancer.2005 115:224-230.

Heneka, M.T., and O’Banion, M.K. Inflammatory processes in Alzheimer's disease. J Neuroimmunol.2007 184:69-91.

Holmes, C., Cunningham, C., Zotova, E., Woolford, J., Dean, C., Kerr, S., Culliford, D.and Perry, V.H. Systemic inflammation and disease progression in Alzheimer disease. Neurology.2009 73:768-774.

Drela, K., Siedlecka, P.,and Sarnowska, A. Domanska-janik, K. Human mesenchymal stem cells in the treatment of neurological diseases.2013 38-56.

Judiono, Djokomoeljanto. R. and Hadisaputro,S. Biomolecular aspects of plain Kefirpotenials.International Journal of Food, Nutrition and Public Health.2012 5.

Dronavalli, S., Duka, I. and Bakris, G.L.The pathogenesis of diabetic nephropathy. Nat ClinPractEndocrinolMetab.2008 4:444-452.

Vance, J.E. Dysregulation of cholesterol balance in the brain contribution to neurodegenerative diseases. Dis. Model.Mech.2012 5:746-755.

Wolozin, B. A. fluid connection: Cholesterol and Abeta. Proc Nalt Acad Sci.2001 98:5371-5373.

El-Tantawy, W. H. and Haleem, E. N. A. Al.Therapeutic effects of stem cell on hyperglycemia, hyperlipidemia, and oxidative stress in alloxan-treated rats. Molecular and Cellular Biochemistry.2014 391:193-200.

Brashears M. M., Gilliland S. E.,and Buck L. M. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J. Dairy Sci.1998 81:2103-2110.

Tamai, Y., Yoshimitsu N., Watanabe. Y., Kuwabara, Y. and Nagai, S. Effects of milk fermented by culturing with varius lactic acid bacteria and yeast on serum cholesterol level in rats. J. Ferment. Journalof Fermentation and Bioengineering.1996 81:181-182.

Sultana, R., Cenini, G. and Butterfield, D. Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Basis of Oxidative Stress.2013 10:1002.

Gus taw-Rothenberg ,K., Lerner, A., Bonda, D.J., Lee, H.G., Zhu, X., Perry, G. and Smith, M.A. Biomarkers in Alzheimer’s disease ; past ,present and future , Bio mark Med.2010 4:1526.

El-denshary, E.S.M., Rashed, L.A. and Elhussiny, M. Immunosuppressive Effects of Mesenchymal Stem Cells versus Corticosteroid in Experimental Model of Arthritis.ClinExpPharmacol.2005 5:003.




DOI: https://doi.org/10.25009/eb.v10i25.2568

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.