Las interneuronas gigantes colinérgicas y su función en el núcleo accumbens

Nuria Garrido-Vázquez, Jorge Luis Valente Flores-Hernández, María Leonor López-Meraz, Consuelo Morgado-Valle, Luis Beltrán-Parrazal

Resumen


Este análisis de la literatura tiene como propósito ofrecer un resumen de los recientes avances en la comprensión de los factores que influyen en la función de las interneuronas colinérgicas gigantes en el núcleo accumbens. Dada la clasificación del núcleo accumbens como un componente crucial del sistema de recompensa cerebral, resulta fundamental explorar los efectos fisiológicos de la acetilcolina como neuromodulador en esta región. Actualmente, se postula que las interneuronas gigantes colinérgicas locales son la única fuente de acetilcolina en el núcleo accumbens. Estas interneuronas desempeñan funciones cruciales en la modulación de la excitabilidad de las neuronas espinosas medianas influyendo en los niveles de dopamina, en la percepción y apreciación de las recompensas y contribuyen al desarrollo, control y mantenimiento de las adicciones. En consecuencia, pueden surgir estados patológicos cuando se produce una variación en los niveles de acetilcolina. Se revisaron 147 artículos con un rango de búsqueda de diez años para ofrecer una descripción del tema, y obtener una comprensión más profunda del papel que desempeñan las interneuronas en funciones complejas. Además, se incluyó una tabla que detalla varios subtipos de interneuronas para establecer un marco de diferenciación, basado en la literatura existente, considerando sus propiedades anatómicas y electrofisiológicas. A través de esta revisión, identificamos un área donde la investigación aún es escasa, lo que complica el desarrollo de tratamientos efectivos para los trastornos adictivos, las enfermedades neuropsiquiátricas y otras afecciones relacionadas con la motivación y el placer.

Abstract

This review aims to provide a summary of recent progress in comprehending the factors that influence the function of cholinergic giant interneurons within the nucleus accumbens. Given the classification of the nucleus accumbens as a pivotal component of the brain´s reward system, making it essential to examine the physiological effects of acetylcholine as a neuromodulator within this region. Currently, it has been postulated that the sole source of acetylcholine in the nucleus accumbens originates from the local cholinergic giant interneurons. These interneurons play crucial roles in modulating the excitability of medium spiny neurons, influencing dopamine levels, the perception and appreciation of rewards, and contributing to the development, control, and maintenance of addictions. Consequently, pathological states may emerge when an alteration in acetylcholine levels occurs. A total of 147 articles were reviewed within a 10-year range to offer a comprehensive description of the subject, aiding us in gaining a deeper understanding of the role interneurons play in complex functions. Additionally, a table featuring various subtypes of interneurons was included to establish a differentiation framework, based on the existing literature, for their anatomical and electrophysiological properties. Through this review, we identified an area where research is still insufficient, hindering the development of effective treatments for addictive disorders, neuropsychiatric diseases, and other conditions related to motivation and pleasure.

Keywords: Nucleus accumbens, cholinergic interneurons, acetylcholine, reward, addiction.


Palabras clave


Núcleo accumbens; interneuronas colinérgicas gigantes; acetilcolina; recompensa; adicción.

Texto completo:

PDF HTML

Referencias


Fazl, A., & Fleisher, J. (2018). Anatomy, Physiology, and Clinical Syndromes of the Basal Ganglia: A Brief Review. Semin Pediatr Neurol, 25, 2–9. https://doi.org/10.1016/j.spen.2017.12.005

Gonzales, K. K., & Smith, Y. (2015). Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci, 1349(1), 1–45. https://doi.org/10.1111/nyas.12762

Havekes, R., Abel, T., & Van der Zee, E. A. (2011). The cholinergic system and neostriatal memory functions. Behav Brain Res, 221(2), 412–423. https://doi.org/10.1016/j.bbr.2010.11.047

Dulawa, S. C., & Janowsky, D. S. (2019). Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry, 24(5), 694–709. https://doi.org/10.1038/s41380-018-0219-x

Corbit, L. H., Muir, J. L., & Balleine, B. W. (2001). The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J Neurosci, 21(9), 3251–3260. https://doi.org/10.1523/JNEUROSCI.21-09-03251.2001

Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. (2013). Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013 7, 55. https://doi.org/10.3389/fncel.2013.00055

Pisansky, M. T., Lefevre, E. M., Retzlaff, C. L., Trieu, B. H., Leipold, D. W., & Rothwell, P. E. (2019). Nucleus Accumbens Fast-Spiking Interneurons Constrain Impulsive Action. Biol Psychiatry, 86(11), 836–847. https://doi.org/10.1016/j.biopsych.2019.07.002

Ligorio, M., Descarries, L., & Warren, R. A. (2009). Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat, 37(1), 33–45. https://doi.org/10.1016/j.jchemneu.2008.08.003

Warner-Schmidt, J. L., Schmidt, E. F., Marshall, J. J., Rubin, A. J., Arango-Lievano, M., Kaplitt, M. G., Ibañez-Tallon, I., Heintz, N., & Greengard, P. (2012). Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci U S A, 109(28), 11360–11365. https://doi.org/10.1073/pnas.1209293109

Buot, A., & Yelnik, J. (2012). Functional anatomy of the basal ganglia: limbic aspects. Rev Neurol ,168(8-9), 569–575. https://doi.org/10.1016/j.neurol.2012.06.015

Lemos, J. C., Wanat, M. J., Smith, J. S., Reyes, B. A., Hollon, N. G., Van Bockstaele, E. J., Chavkin, C., & Phillips, P. E. (2012). Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 490(7420), 402–406. https://doi.org/10.1038/nature11436

Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the "accumbens" part of the rat ventral striatum. Neurosci, 50(4), 751–767. https://doi.org/10.1016/0306-4522(92)90202-d

Zahm D. S. (2000). An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. NEUROSCI BIOBEHAV REV, 24(1), 85–105. https://doi.org/10.1016/s0149-7634(99)00065-2

Chau, D. T., Rada, P., Kosloff, R. A., Taylor, J. L., & Hoebel, B. G. (2001). Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local M1 antagonist in the Porsolt swim test. Neurosci, 104(3), 791–798. https://doi.org/10.1016/s0306-4522(01)00133-6

Lim, S. A., Kang, U. J., & McGehee, D. S. (2014). Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci, 6, 22. https://doi.org/10.3389/fnsyn.2014.00022

Castro, D. C., & Bruchas, M. R. (2019). A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron, 102(3), 529–552. https://doi.org/10.1016/j.neuron.2019.03.003

Schall, T. A., Wright, W. J., & Dong, Y. (2021). Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry, 26(1), 234–246. https://doi.org/10.1038/s41380-020-0683-y

Abudukeyoumu, N., Hernandez-Flores, T., Garcia-Munoz, M., & Arbuthnott, G. W. (2019). Cholinergic modulation of striatal microcircuits. Eur J Neurosci, 49(5), 604–622. https://doi.org/10.1111/ejn.13949

Brimblecombe, K. R., Vietti-Michelina, S., Platt, N. J., Kastli, R., Hnieno, A., Gracie, C. J., & Cragg, S. J. (2019). Calbindin-D28K Limits Dopamine Release in Ventral but Not Dorsal Striatum by Regulating Ca2+ Availability and Dopamine Transporter Function. ACS Chem Neurosci, 10(8), 3419–3426. https://doi.org/10.1021/acschemneuro.9b00325

Wang, W., Xie, X., Zhuang, X., Huang, Y., Tan, T., Gangal, H., Huang, Z., Purvines, W., Wang, X., Stefanov, A., Chen, R., Rodriggs, L., Chaiprasert, A., Yu, E., Vierkant, V., Hook, M., Huang, Y., Darcq, E., & Wang, J. (2023). Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep, 42(2), 112089. https://doi.org/10.1016/j.celrep.2023.112089

Collins, A. L., Aitken, T. J., Huang, I. W., Shieh, C., Greenfield, V. Y., Monbouquette, H. G., Ostlund, S. B., & Wassum, K. M. (2019). Nucleus Accumbens Cholinergic Interneurons Oppose Cue-Motivated Behavior. Biol Psychiatry, 86(5), 388–396. https://doi.org/10.1016/j.biopsych.2019.02.014

Tepper JM, Tecuapetla F, Koós T, Ibáñez-Sandoval O. (2010). Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 2010 4: 150.

Zucca, S., Zucca, A., Nakano, T., Aoki, S., & Wickens, J. (2018). Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo. eLife, 7, e32510. https://doi.org/10.7554/eLife.32510

Mohebi, A., Collins, V. L., & Berke, J. D. (2023). Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation. eLife, 12, e85011. https://doi.org/10.7554/eLife.85011

Mark, G. P., Weinberg, J. B., Rada, P. V., & Hoebel, B. G. (1995). Extracellular acetylcholine is increased in the nucleus accumbens following the presentation of an aversively conditioned taste stimulus. Brain Res, 688(1-2), 184–188. https://doi.org/10.1016/0006-8993(95)00401-b

Ztaou, S., & Amalric, M. (2019). Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int, 126, 1–10. https://doi.org/10.1016/j.neuint.2019.02.019

Contant, C., Umbriaco, D., Garcia, S., Watkins, K. C., & Descarries, L. (1996). Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neurosci, 71(4), 937–947. https://doi.org/10.1016/0306-4522(95)00507-2

Descarries, L., Gisiger, V., & Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol, 53(5), 603–625. https://doi.org/10.1016/s0301-0082(97)00050-6

Inokawa, H., Yamada, H., Matsumoto, N., Muranishi, M., & Kimura, M. (2010). Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Neurosci, 168(2), 395–404. https://doi.org/10.1016/j.neuroscience.2010.03.062

Lewis, R. G., Florio, E., Punzo, D., & Borrelli, E. (2021). The Brain's Reward System in Health and Disease. Adv Exp Med Biol, 1344, 57–69. https://doi.org/10.1007/978-3-030-81147-1_4

Soares-Cunha, C., de Vasconcelos, N. A. P., Coimbra, B., Domingues, A. V., Silva, J. M., Loureiro-Campos, E., Gaspar, R., Sotiropoulos, I., Sousa, N., & Rodrigues, A. J. (2020). Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol psychiatry, 25(12), 3241–3255. https://doi.org/10.1038/s41380-019-0484-3

Shin, J.H., Adrover, M.F., Wess, J., Alvarez, V.A. (2015). Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc Natl Acad Sci U S A, 112(26), 8124-8129. doi:10.1073/pnas.1508846112

Williams, M. J., & Adinoff, B. (2008). The role of acetylcholine in cocaine addiction. Neuropsychopharmacol, 33(8), 1779–1797. https://doi.org/10.1038/sj.npp.1301585

Hoebel, B. G., Avena, N. M., & Rada, P. (2007). Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol, 7(6), 617–627. https://doi.org/10.1016/j.coph.2007.10.014

Collins, A. L., Aitken, T. J., Greenfield, V. Y., Ostlund, S. B., & Wassum, K. M. (2016). Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation. Neuropsychopharmacol, 41(12), 2830–2838. https://doi.org/10.1038/npp.2016.81

Koob G. F. (1999). Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry, 46(9), 1167–1180. https://doi.org/10.1016/s0006-3223(99)00164-x

Chen, Y. W., Rada, P. V., Bützler, B. P., Leibowitz, S. F., & Hoebel, B. G. (2012). Corticotropin-releasing factor in the nucleus accumbens shell induces swim depression, anxiety, and anhedonia along with changes in local dopamine/acetylcholine balance. Neuroscience, 206, 155–166. https://doi.org/10.1016/j.neuroscience.2011.12.009

Ashkenazi, S. L., Polis, B., David, O., & Morris, G. (2021). Striatal cholinergic interneurons exert inhibition on competing default behaviours controlled by the nucleus accumbens and dorsolateral striatum. Eur J Neurosci, 53(7), 2078–2089. https://doi.org/10.1111/ejn.14873

Chapman, K.L., Vaswani, D., Hendry, N., Langmead, C.J., Kew, J.N., Watson, J.M. (2011). The muscarinic M (4) receptor is the functionally predominant subtype in rat and mouse striatum as demonstrated using [(35)S] GTPγS binding. Eur J Pharmacol, 652(1-3), 1–6.

Volpicelli, L. A., & Levey, A. I. (2004). Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res, 145, 59–66. https://doi.org/10.1016/S0079-6123(03)45003-6

Waelbroeck, M., Tastenoy, M., Camus, J., & Christophe, J. (1990). Binding of selective antagonists to four muscarinic receptors (M1 to M4) in rat forebrain. Mol Pharmacol, 38(2), 267–273.

Yasuda, R. P., Ciesla, W., Flores, L. R., Wall, S. J., Li, M., Satkus, S. A., Weisstein, J. S., Spagnola, B. V., & Wolfe, B. B. (1993). Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol, 43(2), 149–157.

Eskow Jaunarajs, K. L., Bonsi, P., Chesselet, M. F., Standaert, D. G., & Pisani, A. (2015). Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol, 127-128, 91–107. https://doi.org/10.1016/j.pneurobio.2015.02.002

Rada, P., Pothos, E., Mark, G. P., & Hoebel, B. G. (1991). Microdialysis evidence that acetylcholine in the nucleus accumbens is involved in morphine withdrawal and its treatment with clonidine. Brain Res, 561(2), 354–356. https://doi.org/10.1016/0006-8993(91)91616-9




DOI: https://doi.org/10.25009/eb.v15i37.2627

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.