Nanomedicines: a therapeutic alternative in development for seizure control
Resumen
Nanomedicine is the term used to define nanometric technologies applied to health care, which have allowed the development of innovative strategies for treating and diagnosing various diseases, including those that affect the central nervous system. In particular, due to the advantages conferred by their intrinsic characteristics, nanomedicines have been explored as a possible therapeutic alternative that allows optimizing the control of seizures and epilepsy through various approaches, which may include improving the pharmacokinetics of anticonvulsants, reducing their adverse effects, increasing their efficacy for seizure control, and, in some cases, overcoming drug resistance. These advantages position nanomedicine as a very attractive tool that helps overcome various challenges for optimal seizure control, sometimes impossible in some particular cases, such as drug resistance. This review addresses general aspects of epilepsy, providing some context on its pathophysiology and the challenges associated with developing treatments for this disease. Furthermore, in this review, we compile the evidence that has evaluated the potential use of different nanomedicines in animal models of seizures and models of responsive and refractory epilepsy from the basic science perspective. These studies provide fundamental evidence, focusing on translational medicine, that establishes the foundation for future applications with the potential for the clinical treatment of epileptic disorders.
Resumen
La nanomedicina es el nombre que se asigna a las tecnologías nanométricas aplicadas al cuidado de la salud, las cuales han permitido el desarrollo de estrategias innovadoras para el tratamiento y diagnóstico de diversas enfermedades, incluidas aquellas que afectan al sistema nervioso central. En particular, debido a las ventajas conferidas por sus características intrínsecas, las nanomedicinas se han explorado como una posible alternativa terapéutica que permita optimizar el control de las crisis epilépticas y la epilepsia a través de diversos enfoques, que pueden incluir el mejorar la farmacocinética de los fármacos anticrisis, reducir sus efectos adversos, aumentar su eficacia para el control de las crisis y, en algunos casos, superar la farmacorresistencia. Estas ventajas posicionan a la nanomedicina como una herramienta muy atractiva que ayude a superar diversos desafíos que han imposibilitado el control óptimo de las crisis en ciertos casos particulares, como la farmacorresistencia. Esta revisión aborda aspectos generales sobre la epilepsia, proporcionando un contexto sobre su fisiopatología y los desafíos asociados con el desarrollo de diversos tratamientos para esta enfermedad. Además, en esta revisión se recopilan las evidencias que han evaluado el uso potencial de diferentes nanomedicinas en modelos animales de crisis agudas, así como en modelos de epilepsia responsiva y refractaria al tratamiento, desde el enfoque de la ciencia básica. Estos estudios proporcionan evidencia fundamental, desde el ámbito de la medicina traslacional, que sienta las bases para futuras aplicaciones con potencial de trasladarse eventualmente a la práctica clínica en el tratamiento de trastornos epilépticos.
Palabras clave: sistema nervioso central; epilepsia; epilepsia refractaria; nanomedicina; nanotransportadores.
Palabras clave
Texto completo:
PDFReferencias
Blanch L, Guerra L, Lanuza A, Palomar G. Innovation and technology transfer in the health sciences: a cross-sectional perspective. Med Intensiva 2014 38: 492-497.
Jia J, Wang Z, Yue T, Su G, Teng C, Yan B. Crossing Biological Barriers by Engineered Nanoparticles. Chem Res Toxicol 2020 33: 1055-1060.
Mittal KR, Pharasi N, Sarna B, Singh M, Rachana, Haider S, Singh SK, Dua K, Jha SK, Dey A, Ojha S, Mani S, Jha NK. Nanotechnology-based drug delivery for the treatment of CNS disorders. Transl Neurosci 2022 13: 527-546.
Nair R, Kumar AC, Priya VK, Yadav CM, Raju PY. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis 2012 11: 72.
Scioli Montoto S, Sbaraglini ML, Talevi A, Couyoupetrou M, Di Ianni M, Pesce GO, Alvarez VA, Bruno-Blanch LE, Castro GR, Ruiz ME, Islan GA. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2018 167: 73-81.
Veronesi MC, Aldouby Y, Domb AJ, Kubek MJ. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res 2009 1303: 151-160.
Musumeci T, Serapide MF, Pellitteri R, Dalpiaz A, Ferraro L, Dal Magro R, Bonaccorso A, Carbone C, Veiga F, Sancini G, Puglisi G. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm 2018 133: 309-320.
Khan N, Shah FA, Rana I, Ansari MM, Din FU, Rizvi SZH, Aman W, Lee GY, Lee ES, Kim JK, Zeb A. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm 2020 577: 119033.
Wang Y, Ying X, Chen L, Liu Y, Wang Y, Liang J, Xu C, Guo Y, Wang S, Hu W, Du Y, Chen Z. Electroresponsive Nanoparticles Improve Antiseizure Effect of Phenytoin in Generalized Tonic-Clonic Seizures. Neurotherapeutics 2016 13: 603-13.
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014 2014: 869269.
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021 9: 1834.
Rosillo-de la Torre A, Zurita-Olvera L, Orozco-Suarez S, Garcia Casillas PE, Salgado-Ceballos H, Luna-Barcenas G, Rocha L. Phenytoin carried by silica core iron oxide nanoparticles reduces the expression of pharmacoresistant seizures in rats. Nanomedicine (Lond) 2015 10: 3563-3577.
Fang Z, Chen S, Qin J, Chen B, Ni G, Chen Z, Zhou J, Li Z, Ning Y, Wu C, Zhou L. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials 2016 97: 110-121.
Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J, Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005 46: 470-472.
Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J, Jr., Forsgren L, French JA, Glynn M, Hesdorffer DC, Lee BI, Mathern GW, Moshe SL, Perucca E, Scheffer IE, Tomson T, Watanabe M, Wiebe S. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014 55: 475-482.
World Health Organization. Epilepsy: a public health Initiative. 2019 REVISAR CITA Epilepsy: a public health imperative. Summary. Geneva: World Health Organization; 2019 (WHO/MSD/MER/19.2). Licence: CC BY-NC-SA 3.0 IGO.
Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, Pringsheim T, Lorenzetti DL, Jette N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017 88: 296-303.
Christensen J, Dreier JW, Sun Y, Linehan C, Tomson T, Marson A, Forsgren L, Granbichler CA, Trinka E, Illiescu C, Malmgren K, Kjellberg J, Ibsen R, Jennum PJ, Consortium E, Collaborators E. Estimates of epilepsy prevalence, psychiatric comorbidity and cost. Seizure 2023 107: 162-171.
Vera-Gonzalez A. Pathophysiological Mechanisms Underlying the Etiologies of Seizures and Epilepsy. In Epilepsy, Czuczwar, S. J., Ed. Brisbane (AU), 2022.
Falco-Walter J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin Neurol 2020 40: 617-623.
Kerr MP. The impact of epilepsy on patients' lives. Acta Neurol Scand Suppl 2012 1-9.
Begley C, Wagner RG, Abraham A, Beghi E, Newton C, Kwon CS, Labiner D, Winkler AS. The global cost of epilepsy: A systematic review and extrapolation. Epilepsia 2022 63: 892-903.
Mayor R, Gunn S, Reuber M, Simpson J. Experiences of stigma in people with epilepsy: A meta-synthesis of qualitative evidence. Seizure 2022 94: 142-160.
Karakis I, Boualam N, Moura LM, Howard DH. Quality of life and functional limitations in persons with epilepsy. Epilepsy Res 2023 190: 107084.
Saxena VS, Nadkarni VV. Nonpharmacological treatment of epilepsy. Ann Indian Acad Neurol 2011 14: 148-152.
Riva A, Golda A, Balagura G, Amadori E, Vari MS, Piccolo G, Iacomino M, Lattanzi S, Salpietro V, Minetti C, Striano P. New trends and most promising therapeutic strategies for epilepsy treatment. Frontiers in neurology 2021 12: 753753.
Sanchez JD, Gomez-Carpintero J, Gonzalez JF, Menendez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024 272: 116476.
Akyuz E, Koklu B, Ozenen C, Arulsamy A, Shaikh MF. Elucidating the Potential Side Effects of Current Antiseizure Drugs for Epilepsy. Curr Neuropharmacol 2021 19: 1865-1883.
Janson MT, Bainbridge JL. Continuing Burden of Refractory Epilepsy. Ann Pharmacother 2021 55: 406-408.
Wang X, Zhu H, Liu T, Guo Z, Zhao C, He Z, Zheng W. Comparison of various doses of oral cannabidiol for treating refractory epilepsy indications: a network meta-analysis. Frontiers in Neurology 2024 15: 1243597.
Guery D, Rheims S. Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatr Dis Treat 2021 17: 2229-2242.
Mansoori GA, Soelaiman TF. Nanotechnology-An introduction for the standards community. Chicago: ASTM International 2005
Palmquist DL. Palmitic acid as a source of endogenous acetate and -hydroxybutyrate in fed and fasted ruminants. J Nutr 1972 102: 1401-1406.
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems. Polymers (Basel) 2023 15: 1596.
Kamali Shahri SM, Sharifi S, Mahmoudi M. Interdependency of influential parameters in therapeutic nanomedicine. Expert Opin Drug Deliv 2021 18: 1379-1394.
Chrastina A, Massey KA, Schnitzer JE. Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011 3: 421-437.
Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv 2021 11: 19041-19058.
Talha M, Pathak N, Bhattacharyya S, Lin Y. Bio-nanomaterials and their applications. In Applications of Multifunctional Nanomaterials, Elsevier.: 2023: 461-473.
Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 2011 22: 993-1000.
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials (Basel) 2020 10: 1700.
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023 167: 115597.
Lozano D, Larraga V, Vallet-Regi M, Manzano M. An Overview of the Use of Nanoparticles in Vaccine Development. Nanomaterials (Basel) 2023 13:1828.
McNeil SE. Evaluation of nanomedicines: stick to the basics. Nature reviews materials. 2016 1: 1-2.
Aljabali AA, Obeid MA, Amawi HA, Rezigue MM, Hamzat Y, Satija S, Tambuwala MM. Application of nanomaterials in the diagnosis and treatment of genetic disorders. Applications of nanomaterials in human health. 2020 125-146.
Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact Mater 2017 2: 185-198.
Chu DT, Thi HV, Nguyen TT, Vu TD, Thi YVN, Mani I, Gohil N, Bhattacharjee G, Ramakrishna S, Singh V. Nanotechnology and nucleic acid nanoparticles for treatment of metabolic disorders. OpenNano. 2023 13: 100181.
Silva AM, Siopa JR, Martins-Gomes C, Teixeira MC, Santos DJ, Pires MDA, Andreani T. New strategies for the treatment of autoimmune diseases using nanotechnologies. In Emerging Nanotechnologies in Immunology. Elsevier 2018; 135-163.
Feng L, Wang H, Xue X. Recent progress of nanomedicine in the treatment of central nervous system diseases. Adv Therap 2020 3: 1900159.
Jia Y, Jiang Y, He Y, Zhang W, Zou J, Magar KT, Boucetta H, Teng C, He W. Approved Nanomedicine against Diseases. Pharmaceutics 2023 15: 774.
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004 84: 869-901.
Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers 2016 4: e1154641.
Golden PL, Pollack GM. Blood-brain barrier efflux transport. J Pharm Sci 2003 92: 1739-53.
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023 22: 1.
Wang J, Yu Y, Zhang C, Song J, Zheng Z, Yan W. New advances in diagnosis and treatment of nano drug delivery systems across the blood-brain barrier. Nanocomposites. 2023 9: 116-127.
Zhou Z, Bai R, Wang Z, Bryant H, Lang L, Merkle H, Munasinghe J, Tang L, Tang W, Tian R, Yu G, Ma Y, Niu G, Gao J, Chen X. An Albumin-Binding T(1)- T(2) Dual-Modal MRI Contrast Agents for Improved Sensitivity and Accuracy in Tumor Imaging. Bioconjug Chem 2019 30: 1821-1829.
Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, Hatzinger SJ, Ellenbogen RG, Silber JR, Zhang M. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano 2014 8: 10383-10395.
Yang J, Wadghiri YZ, Hoang DM, Tsui W, Sun Y, Chung E, Li Y, Wang A, de Leon M, Wisniewski T. Detection of amyloid plaques targeted by USPIO-Abeta1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging. Neuroimage 2011 55: 1600-1609.
Sillerud LO, Solberg NO, Chamberlain R, Orlando RA, Heidrich JE, Brown DC, Brady CI, Vander Jagt TA, Garwood M, Vander Jagt DL. SPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AbetaPP/PS-1 transgenic mouse brain. J Alzheimers Dis 2013 34: 349-365.
Yue HY, Huang S, Chang J, Heo C, Yao F, Adhikari S, Gunes F, Liu LC, Lee TH, Oh ES, Li B, Zhang JJ, Huy TQ, Luan NV, Lee YH. ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson's disease. ACS Nano 2014 8: 1639-1646.
Lin KY, Kwong GA, Warren AD, Wood DK, Bhatia SN. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS nano 2013 7: 9001-9009.
Marekova D, Turnovcova K, Sursal TH, Gandhi CD, Jendelova P, Jhanwar-Uniyal M. Potential for Treatment of Glioblastoma: New Aspects of Superparamagnetic Iron Oxide Nanoparticles. Anticancer Res 2020 40: 5989-5994.
Imam F, Mukhopadhyay S, Kothiyal P, Alshehri S, Saad Alharbi K, Afzal M, Iqbal M, Rashid Khan M, Khalid Anwer M, Ahmed Hattab Alanazi A, Ghanem Alqahtani A, Abdullah Alhamamah M. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer's disease. Saudi Pharm J 2024 32: 102048.
Mehdi-Alamdarlou S, Ahmadi F, Azadi A, Shahbazi MA, Heidari R, Ashrafi H. A cell-mimicking platelet-based drug delivery system as a potential carrier of dimethyl fumarate for multiple sclerosis. Int J Pharm 2022 625: 122084.
Abourehab MA, Ahmed OA, Balata GF, Almalki WH. Self-assembled biodegradable polymeric micelles to improve dapoxetine delivery across the blood-brain barrier. Int J Nanomedicine 2018 13: 3679-3687.
Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomedicine 2020 28: 102222.
Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics 2022 14: 2742.
Geeva, Narayan S. Lithium entrapped chitosan nanoparticles to reduce toxicity and increase cellular uptake of lithium. Environ Toxicol Pharmacol 2018 61: 79-86.
Vossler DG, Weingarten M, Gidal BE. American Epilepsy Society Treatments C, Summary of Antiepileptic Drugs Available in the United States of America: WORKING TOWARD A WORLD WITHOUT EPILEPSY. Epilepsy Curr 2018 18: 1-26.
Perucca E, Johannessen SI. The ideal pharmacokinetic properties of an antiepileptic drug: how close does levetiracetam come? Epileptic Disord 2003 5 Suppl 1: S17-26.
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond) 2020 15: 205-214.
Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, Betbeder D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999 291: 1017-1022.
Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 2000 49: 103-109.
Darius J, Meyer FP, Sabel BA, Schroeder U. Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J Pharm Pharmacol 2000 52: 1043-1047.
Yusuf M, Khan RA, Khan M, Ahmed B. Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted beta-carotene nanoparticles. Int J Nanomedicine 2012 7: 4311-4321.
Holtman L, van Vliet EA, Appeldoorn C, Gaillard PJ, de Boer M, Dorland R, Wadman WJ, Gorter JA. Glutathione pegylated liposomal methylprednisolone administration after the early phase of status epilepticus did not modify epileptogenesis in the rat. Epilepsy Res 2014 108: 396-404.
Wilson B, Lavanya Y, Priyadarshini SR, Ramasamy M, Jenita JL. Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm 2014 473: 73-79.
Ugur Yilmaz C, Emik S, Orhan N, Temizyurek A, Atis M, Akcan U, Khodadust R, Arican N, Kucuk M, Gurses C, Ahishali B, Kaya M. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci 2020 257: 118081.
Kandilli B, Ugur Kaplan AB, Cetin M, Taspinar N, Ertugrul MS, Aydin IC, Hacimuftuoglu A. Carbamazepine and levetiracetam-loaded PLGA nanoparticles prepared by nanoprecipitation method: in vitro and in vivo studies. Drug Dev Ind Pharm 2020 46: 1063-1072.
Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 2011 6: 363-371.
Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert opinion on drug delivery. 2015 12: 181-194.
Formica ML, Real DA, Picchio ML, Catlin E, Donnelly RF, Paredes AJ. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Applied Materials Today. 2022 29: 101631.
Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem Int Ed Engl 2014 53: 12436-12440.
Abbas H, Refai H, El Sayed N. Superparamagnetic Iron Oxide-Loaded Lipid Nanocarriers Incorporated in Thermosensitive In Situ Gel for Magnetic Brain Targeting of Clonazepam. J Pharm Sci 2018 107: 2119-2127.
Hsiao MH, Larsson M, Larsson A, Evenbratt H, Chen YY, Chen YY, Liu DM. Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J Control Release 2012 161: 942-948.
Samia O, Hanan R, Kamal el T. Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 2012 19: 58-67.
Wang C, Sun W, Zhang J, Zhang J, Guo Q, Zhou X, Fan D, Liu H, Qi M, Gao X, Xu H, Gao Z, Tian M, Zhang H, Wang J, Wei Z, Long NJ, Mao Y, Li C. An electric-field-responsive paramagnetic contrast agent enhances the visualization of epileptic foci in mouse models of drug-resistant epilepsy. Nat Biomed Eng 2021 5: 278-289.
Jehi L. Advances in Therapy for Refractory Epilepsy. Annu Rev Med 2024 76.
Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017 8: 301.
Czornyj L, Auzmendi J, Lazarowski A. Transporter hypothesis in pharmacoresistant epilepsies. Is it at the central or peripheral level? Epilepsia Open 2022 7 Suppl 1: S34-S46.
Zybina A, Anshakova A, Malinovskaya J, Melnikov P, Baklaushev V, Chekhonin V, Maksimenko O, Titov S, Balabanyan V, Kreuter J, Gelperina S, Abbasova K. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy. Int J Pharm 2018 547: 10-23.
Wang J, Fu J, Sun W, Yin X, Lv K, Zhang J. Functionalized PEG-PLA nanoparticles for brain targeted delivery of ketoconazole contribute to pregnane X receptor overexpressing in drug-resistant epilepsy. Epilepsy Res 2022 186: 107000.
Liu J, He Y, Zhang J, Li J, Yu X, Cao Z, Meng F, Zhao Y, Wu X, Shen T, Hong Z. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials 2016 74: 64-76.
Du C, Wang J, Liu X, Li H, Geng D, Yu L, Chen Y, Zhang J. Construction of Pepstatin A-Conjugated ultrasmall SPIONs for targeted positive MR imaging of epilepsy-overexpressed P-glycoprotein. Biomaterials 2020 230: 119581.
Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, Zhou S, Pang Z, Geng D, Zhang J. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials 2016 76: 173-186.
DOI: https://doi.org/10.25009/eb.v16i40.2640
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.