Participación del sistema nervioso autónomo en la regulación y desarrollo de fisiopatologías testiculares

María De la Paz Palacios-Arellano, Edson D. García-Martínez, Jessica N. Landa-García, Viridiana Sánchez-Zavaleta, Fausto Rojas-Durán, Jorge Manzo-Denes, Gonzalo E. Aranda-Abreu, Deissy Herrera-Covarrubias, María R. Toledo-Cárdenas, Genaro Alfonso Coria-Ávila, María Elena Hernández-Aguilar

Resumen


Los testículos son órganos esenciales del sistema reproductor masculino, cuya principal función es llevar a cabo la espermatogénesis y sintetizar hormonas sexuales, especialmente la testosterona. Se sabe que estos órganos están regulados por el eje hipotálamo-hipófisis-testículo (HHT), en el cual participan hormonas como la luteinizante (LH), la foliculoestimulante (FSH) y la testosterona (T), así mismo se ha documentado que el sistema nervioso autónomo (SNA) desempeña un papel en su regulación a través de nervios autonómicos. Uno de estos componentes son los espermáticos superiores e inferiores, los cuales han sido ampliamente estudiados. Los otros corresponden a los nervios hipogástricos y pélvicos, que convergen en el ganglio pélvico mayor (GPM), y de aquí surge la inervación hacia el testículo que les provee de noradrenalina y acetilcolina, neurotransmisores esenciales para el correcto funcionamiento de las funciones testiculares. Hasta el momento, se ha demostrado que la falta de inervación produce alteraciones histológicas en el tejido testicular. No obstante, aún es necesario profundizar en el conocimiento sobre el papel del SNA en la regulación testicular. Por ello, esta revisión tiene como objetivo analizar y destacar la influencia del SNA en la fisiopatología testicular, así como los mecanismos neurofisiológicos que intervienen en dicha regulación.

Abstract

The testes are essential organs of the male reproductive system, whose primary function is to carry out spermatogenesis and synthesize sex hormones, especially testosterone. These organs are known to be regulated by the hypothalamic-pituitary-testis (HPT) axis, which involves hormones such as luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T). It has also been documented that the autonomic nervous system (ANS) plays a role in their regulation through autonomic nerves. One of these components is the superior and inferior spermatic nerves, which have been extensively studied. The others correspond to the hypogastric and pelvic nerves, which converge in the major pelvic ganglion (MPG), and from here, innervation to the testicle arises, providing them with norepinephrine and acetylcholine, neurotransmitters essential for the proper functioning of testicular functions. To date, it has been demonstrated that lack of innervation produces histological alterations in testicular tissue. However, further understanding of the role of the ANS in testicular regulation is still needed. Therefore, this review aims to analyze and highlight the influence of the ANS on testicular pathophysiology, as well as the neurophysiological mechanisms involved in such regulations.

Keywords: testis; autonomic nerves; neuroregulation.


Palabras clave


Testículo; nervios autonómicos; neuroregulación

Texto completo:

PDF

Referencias


Li L, Lin W, Wang Z. (2024). Hormone Regulation in Testicular Development and Function. International Journal of Molecular Sciences,25,5805. https://doi.org/10.3390/IJMS25115805

De Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. (1998). Spermatogenesis. Human Reproduction, 1,1-8. https://doi.org/10.1093/HUMREP/13.SUPPL_1.1

Chen H, Wang Y, Ge R, Zirkin BR. (2017). Leydig cell stem cells: Identification, proliferation and differentiation. Mol Cell Endocrinol, 445, 65-73. https://doi.org/10.1016/J.MCE.2016.10.010

Guazzone VA, Lustig L. (2013). Varicocele and testicular cord torsion: immune testicular microenvironment imbalance. Front Cell Dev Biol,11,1282579. https://doi.org/10.3389/FCELL.2023.1282579/BIBTEX

Gong YG, Wang YQ, Gu M, Feng MM, Zhang W, Ge RS. (2009). Deprival of testicular innervation induces apoptosis of Leydig cells via caspase-8-dependent signaling: A novel survival pathway revealed. Biochem Biophy,382,165. https://doi.org/10.1016/J.BBRC.2009.02.159

Felix RGS, Pereira AK, Moura MJ. (2023) A Review of Sympathetic and Parasympathetic Innervation in the Structural and Functional Maintenance of the Male Gonad.Teriogenología, 23, 20. https://doi.org/10.5772/INTECHOPEN.112418

Rauchenwald M, Steers WD, Desjardins C. (1995). Efferent Innervation of the Rat Testis. Biol Reprod,52,1136-1143. https://doi.org/10.1095/biolreprod52.5.1136

Keast JR. (2006). Plasticity of pelvic autonomic ganglia and urogenital innervation. Int Rev Cytol,248,141-208. https://doi.org/10.1016/S0074-7696(06)48003-7

Palacios M, Hernández ME, Sánchez V. (2020). Efecto de la lesión nerviosa sobre la histología del testículo y el recuento espermático. Universidad Veracruzana.29-34.

Chow SH, Giglio W, Anesetti R, Ottenweller JE, Pogach LM, Huang HFS. (2020) The effects of testicular denervation on spermatogenesis in the Sprague-Dawley rat. Neuroendocrinology,72,37-45. https://doi.org/10.1159/000054569

Brown DJ, Hill ST, Baker HWG. (2006). Male fertility and sexual function after spinal cord injury. Prog Brain Res,152,427-439. https://doi.org/10.1016/S0079-6123(05)52029-6

Qiu Q, Chen J, Xu N. (2023). Effects of autonomic nervous system disorders on male infertility. Front Neurol,20,14. https://doi.org/10.3389/FNEUR.2023.1277795

Neto FTL, Bach PV, Najari BB, Li PS, Goldstein M. (2016). Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol, 59,10-26. https://doi.org/10.1016/J.SEMCDB.2016.04.009

Gibson A, Akinrinsola A, Patel T, Ray A, Tucker J, McFadzean I. (2002). Pharmacology and thermosensitivity of the dartos muscle isolated from rat scrotum. Br J Pharmacol,136,1194. https://doi.org/10.1038/SJ.BJP.0704830

Philyppov IB, Sotkis G V., Sharopov BR. (2022).Temperature-dependent contractility of rat tunica dartos muscle: Contribution of cold, menthol-sensitive TRPM8. BBA Advances,3,100069. https://doi.org/10.1016/J.BBADVA.2022.100069

Amann RP. (2008).The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl,29,469-487. https://doi.org/10.2164/JANDROL.107.004655

Rojas, M., Conei, D., & Bustos-Obregón, E. (2017). Interacciones epitelio-mesenquimáticas en el desarrollo testicular. International Journal of Morphology, 35, 1444–1450. https://doi.org/10.4067/S0717-95022017000401444

Zhu, Q., Li, X., & Ge, R. S. (2020). Toxicological effects of cadmium on mammalian testis. Frontiers in Genetics, 11, 527. https://doi.org/10.3389/fgene.2020.00527

Abdollahi, F., Amanpour, S., Muhammadnajad, A., Barzegar, F., & Dehghan, S. (2023). Testicular histopathology in rats co-exposed to heat and psychological stressors. Heliyon, 9, 4146. https://doi.org/10.1016/j.heliyon.2023.e1414620

Gutiérrez PO, Rojas JC, Chavez SM, Reyes G, Vigueras RM. (2024). Infertility in rats subjected to genitofemoral nerve section is not associated with testicular damage. Andrologia,46,151-157. https://doi.org/10.1016/j.heliyon.2023.e14146

Giwerc, A., Masson A., Desgrandchamps, F., & Méria, P. (2019). Quistes y tumores del epidídimo. EMC Urología, 51, 1–10. https://doi.org/10.1016/S1761-3310(19)42719-9

Costagliola, A., Dall’Aglio, C., Graïc, J. M., Omirinde, J. O., & Azeez, I. (2022). Neuropeptide profiles of mammalian male genital tract: Distribution and functional relevance in reproduction. Frontiers in Veterinary Science, 9, 842515. https://doi.org/10.3389/fvets.2022.842515

Serrano MK., Hernández ME. (2018). Efecto de la denervación hipogástrica y/o pélvica sobre la expresión de receptores a andrógenos, adrenérgicos, colinérgicos y los niveles de testosterona sérica en próstata de rata. Universidad Veracruzana, 39.

Rojas, M., Conei, D., & Bustos-Obregón, E. (2017). Interacciones epitelio-mesenquimáticas en el desarrollo testicular. International Journal of Morphology, 35, 1444–1450. https://doi.org/10.4067/S0717-95022017000401444

Amarilla, M, Glienke L., Munduruca T. (2024). Impaired spermatogenesis in infertile patients with orchitis and experimental autoimmune orchitis in rats. Biology (Basel), 13, 278. https://doi.org/10.3390/biology13040278

Cavicchia, J. C., & Morales, A. (1992). Characterization of nuclear pore distribution in freeze-fracture replicas of seminiferous tubules isolated by transillumination. Tissue and Cell, 24, 75–84. https://doi.org/10.1016/0040-8166(92)90082-I

Parapanov, R., Nusslé, S., Hausser, J., & Vogel, P. (2008). Histological description of seminiferous epithelium and cycle length of spermatogenesis in the water shrew Neomys fodiens (Mammalia: Soricidae). Animal Reproduction Science, 107, 148–160. https://doi.org/10.1016/j.anireprosci.2007.06.012

Mruk, D. D., & Cheng, C. Y. (2015). The mammalian blood-testis barrier: Its biology and regulation. Endocrine Reviews, 36, 564–591. https://doi.org/10.1210/er.2014-1101

Siu, M. K. Y., & Cheng, C. Y. (2009). Extracellular matrix and its role in spermatogenesis. In Advances in Experimental Medicine and Biology, 636, 74–91. https://doi.org/10.1007/978-0-387-09597-4_5

Smith, L. B., & Walker, W. H. (2014). The regulation of spermatogenesis by androgens. Seminars in Cell & Developmental Biology, 1, 2–13. https://doi.org/10.1016/j.semcdb.2014.02.012

Chen, H., Wang, Y., Ge, R., & Zirkin, B. R. (2017). Leydig cell stem cells: Identification, proliferation and differentiation. Molecular and Cellular Endocrinology, 445, 65–73. https://doi.org/10.1016/j.mce.2016.10.010

Standring, S., Ellis, H., Healy, J., Johnson, D., Williams, A., Collins, P., & Wigley, C. (2005). Gray’s Anatomy: The anatomical basis of clinical practice. American Journal of Neuroradiology, 26, 2703. https://www.ajnr.org/content/26/10/2703.short

Setchell B, Breed W. (2016).Anatomía, vasculatura e inervación del tracto reproductor masculino. Reproduction, Fertility and Development, 28,545-55. https://doi.org/10.1071/RD13395

Zhang, Y., Liu, Z., Yun, X. (2023). Transcriptome Profiling of Developing Testes and First Wave of Spermatogenesis in the Rat. Genes (Basel), 14, 229. https://doi.org/10.3390/genes14010229

Creasy, D. M., Panchal, S. T., Garg, R., & Samanta, P. (2021). Deep Learning-Based Spermatogenic Staging Assessment for Hematoxylin and Eosin-Stained Sections of Rat Testes. Toxicologic Pathology, 49, 872–887. https://doi.org/10.1177/0192623320969678

Johnson, R. H., & Spaulding, J. M. (1974). Disorders of the autonomic nervous system. Chapter 12. The urino-genital system and its investigation. Contemporary Neurology Series, 11, 220–232. https://pubmed.ncbi.nlm.nih.gov/4615872/

Sosa, Z. Y., Palmada, M. N., Fóscolo, M. R., Capani, F., Conill, A., & Cavicchia, J. C. (2009). Administration of noradrenaline in the autonomic ganglia modifies the testosterone release from the testis using an ex vivo system. International Journal of Andrology, 32, 391–398. https://doi.org/10.1111/j.1365-2605.2008.00927

Holdcraft, R. W., & Braun, R. E. (2004). Hormonal regulation of spermatogenesis. International Journal of Andrology, 27, 335–342. https://doi.org/10.1111/j.1365-2605.2004.00502

Midzak, A. S., Chen, H., Papadopoulos, V., & Zirkin, B. R. (2009). Leydig cell aging and the mechanisms of reduced testosterone synthesis. Molecular and Cellular Endocrinology, 299, 23–31. https://doi.org/10.1016/j.mce.2008.07.016

Galano, M., Venugopal, S., & Papadopoulos, V. (2022). Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. International Journal of Molecular Sciences, 23(20), 12115. https://doi.org/10.3390/ijms232012115

Barbagallo, F., Condorelli, R. A., Mongioì, L. (2020). Effects of Bisphenols on Testicular Steroidogenesis. Frontiers in Endocrinology, 11, 373. https://doi.org/10.3389/fendo.2020.00373

Rojas, J. R. (2011). El receptor a andrógenos en la fisiopatología prostática. Universidad Veracruzana. https://www.uv.mx/eneurobiologia/vols/2011/4/rojas-etal/html.html#NUEVE

Lee, H. G., & Kim, C. J. (2022). Classic and backdoor pathways of androgen biosynthesis in human sexual development. Annals of Pediatric Endocrinology & Metabolism, 27, 83–89. https://doi.org/10.6065/apem.2244124.062

Vaalasti, A. (1994). Autonomic Innervation of the Human Male Accessory Sex Glands. In Ultrastructure of the Male Urogenital Glands,20, 187–196). https://doi.org/10.1007/978-1-4615-2624-7_11

Espinosa M E., Hernández PC., Losada BR., Gómez Taguada, A., & González Roy, J. L. (2001). Estudio del sistema nervioso periférico en pacientes con anemia drepanocítica. Revista Cubana de Hematología, Inmunología y Hemoterapia, 17, 115–122. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892001000200005

Beveridge, T. S., Johnson, M., Power, A., Power, N. E., & Allman, B. L. (2015). Anatomy of the nerves and ganglia of the aortic plexus in males. Journal of Anatomy, 226(1), 93–103. https://doi.org/10.1111/joa.12251

McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71(4), 78. https://doi.org/10.5688/aj710478

Mateos ME., Hernández ME. (2021). Efecto de la conducta sexual y la denervación pélvica y/o hipogástrica sobre la expresión de receptores adrenérgicos, colinérgicos, andrógenos y prolactina en el ganglio pélvico mayor de la rata macho. Universidad Veracruzana. https://cdigital.uv.mx/

Hernández M E., Serrano, M. K., Pérez, F. (2020). Quantification of neural and hormonal receptors at the prostate of long-term sexual behaving male rats after lesion of pelvic and hypogastric nerves. Physiology & Behavior, 222, 112915. https://doi.org/10.1016/j.physbeh.2020.112915

Keast, J. R. (1995). Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience, 66(3), 655–662. https://doi.org/10.1016/0306-4522(94)00595-v

Pinho, M. S., Afonso, F., Fernandes, P., Rodrigues, G., Mata, L. R., & Gulbenkian, S. (1996). Effect of castration on the VIPergic innervation and 125I-labelled vasoactive intestinal peptide (VIP) binding sites in the hamster seminal vesicle. Regulatory Peptides, 66(3), 169–177. https://doi.org/10.1016/s0167-0115(96)00096-1

Sánchez, C. (2021). Contribución del sistema nervioso autónomo y la conducta sexual en la fisiopatología de la próstata. Universidad Veracruzana. https://www.uv.mx/eneurobiologia/vols/2021/29/S%C3%A1nchez/HTML.html

Motoc A. Rusu MC., Jianu AM. (2010). The espermatic ganglion in humans: an anatomical update.Romanian Journal of Morphology and Embryology. 51, 719-723. https://pubmed.ncbi.nlm.nih.gov/21103632/

Billups, K. L., Tillman, S., & Chang, T. S. K. (1990). Ablation of the inferior mesenteric plexus in the rat: alteration of sperm storage in the epididymis and vas deferens. Journal of Urology, 143(3), 625–629. https://doi.org/10.1016/s0022-5347(17)40043-7

Kempinas, DG., Suarez, J. D., Roberts, N. L. (1998). Fertility of Rat Epididymal Sperm after Chemically and Surgically Induced Sympathectomy. Biology of Reproduction, 59(4), 897–904. https://doi.org/10.1095/biolreprod59.4.897

Rickert., Chamness H. (1996). Changes in luminal fluid protein composition in the rat cauda epididymidis following partial sympathetic denervation. Journal of andrology, 17, 117-126. https://doi.org/10.1002/j.1939-4640.1996.tb01760.x

Zhu, B. C., Chiocchio, S. R., Suburo, A. M., & Tramezzani, J. H. (1995). Monoaminergic and peptidergic contributions of the superior and the inferior spermatic nerves to the innervation of the testis in the rat. Journal of andrology, 16(3), 248-258. https://doi.org/10.1002/j.1939-4640.1995.tb00521.x

Chiocchio, S. R., Suburo, A. M., Vladucic, E. (1999). Differential effects of superior and inferior spermatic nerves on testosterone secretion and spermatic blood flow in cats. Endocrinology, 140(3), 1036–1043. https://doi.org/10.1210/endo.140.3.6569

Keast, J. R. (1999). The autonomic nerve supply of male sex organs an important target of circulating androgens. Behavioural Brain Research, 105, 81–92. https://doi.org/10.1016/s0166-4328(99)00084-4

Sánchez ZV, Mateos MA, Cruz VH, Aranda G, Herrera D, Rojas F, Suárez J, Manzo J, Toledo MR, Hernández ME. (2021). Contribución del sistema nervioso autónomo y la conducta sexual en la fisiopatología de la próstata. ENeurobiologia, 30. https://www.uv.mx/eneurobiologia/vols/2021/29/S%C3%A1nchez/HTML.html

Landa JN., Palacios MP, Morales MA., Hernández ME. (2024). The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals, 14, 2570. https://doi.org/10.3390/ani14172570

Hernández ME, Serrano MK, Pérez F. (2020). Quantification of neural and hormonal receptors at the prostate of long-term sexual behaving male rats after lesion of pelvic and hypogastric nerves. Physiol Behav, 222, 112915. https://doi.org/10.1016/J.PHYSBEH.2020.112915

Bertrand, M. M., & Keast, J. R. (2020). Dissection of Pelvic Autonomic Ganglia and Associated Nerves in Male and Female Rats. Journal of Visualized Experiments,30, 157. https://doi.org/10.3791/60904

Chow, S. H., Giglio, W., Anesetti, R., et al. (2000). The Effects of Testicular Denervation on Spermatogenesis in the Sprague-Dawley Rat. Neuroendocrinology, 72(1), 37–45. https://doi.org/10.1159/000054569

Huo, S., Xu, Z., Zhang, X., Zhang, J., & Cui, S. (2010). Testicular Denervation in Prepuberty Rat Inhibits Seminiferous Tubule Development and Spermatogenesis. Journal of Reproduction and Development, 56(4), 370–378. https://doi.org/10.1262/jrd.10-009n

Salazar, G., Liu, D., Liao, C. (2003). Apoptosis in male germ cells in response to cyclin A1-deficiency and cell cycle arrest. Biochemical Pharmacology, 66, 1571–1579. https://doi.org/10.1016/s0006-2952(03)00513-6




DOI: https://doi.org/10.25009/eb.v16i41.2645

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una revista de publicación continua editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.