Aplicaciones terapéuticas para la lesión de médula espinal

César Antonio Pérez Estudillo, Daniel Sánchez Alonso, María Leonor López Meraz, Consuelo Morgado Valle, Luis Beltran Parrazal, Genaro Alfonso Coria Avila, María Elena Hernández Aguilar, Jorge Manzo Denes

Resumen


En el Sistema Nervioso Central, los mecanismos celulares de auto-protección y regeneración se alteran después de algún tipo de lesión. La lesión completa o incluso parcial de la médula espinal produce un daño neural permanente y, como consecuencia, existe una nula auto-recuperación. La recuperación debida al uso de terapias es muy limitada, porque dichas terapias no son eficaces para la protección y regeneración neuronal. En la búsqueda de una recuperación total del sujeto parapléjico o cuadripléjico, se han desarrollado investigaciones a nivel básico y algunas han sido llevadas a la clínica. Gracias a esas investigaciones se han descubierto los mecanismos responsables de la falta de regeneración espinal y se han diseñado estrategias terapéuticas que proponen limitar la barrera conocida como cicatriz glial del tejido espinal dañado. Dichas estrategias incluyen trasplantes de astrocitos inmaduros, fragmentos de tejido neural embrionario, células madre, entre otros, para aumentar la regeneración neuronal contra el ambiente inhibitorio, y para reemplazar el tejido neuronal dañado. Por otro lado, la fisioterapia juega un papel vital en la rehabilitación de sujetos con lesión espinal. Sin embargo, en distintos modelos animales este tipo de estudios ha sido poco exitoso, y los resultados son todavía polémicos para su aplicación en humanos. Actualmente, los tratamientos farmacológicos en pacientes con lesión espinal son caros. Este artículo de revisión propone que la electro-acupuntura y la fitoterapia podrían funcionar como nuevas estrategias de reparación espinal. Además, con este tipo de tratamiento, la rehabilitación de sujetos con lesión de médula espinal sería menos costosa.

 

Abstract

In the Central Nervous System, the cellular mechanisms of self-protection and regeneration are altered after some type of injury. Complete or even partial injury to the spinal cord causes permanent neural damage and, as a result, there is no self-recovery. The recovery due to the use of therapies is very limited because such therapies are not effective for protection and neural regeneration. In the search for a total recovery of the paraplegic or quadriplegic subject, a lot of researches have been done at the basic level and some have been taken to the clinic. Due to these researches, the mechanisms responsible for the lack of spinal regeneration have been discovered and therapeutic strategies have been designed to limit the barrier known as the glial scar of damaged spinal tissue. Such strategies include grafts of immature astrocytes, fragments of embryonic neural tissue, stem cells, among others, to increase neuronal regeneration against the inhibitory environment, and to replace damaged neuronal tissue. On the other hand, physiotherapy plays a vital role in the rehabilitation of subjects with spinal injury. However, in different animal models this type of studies has been unsuccessful, and the results are still controversial for its application in humans. Currently, pharmacological treatments in patients with spinal injury are expensive. This review article proposes that electro-acupuncture and phytotherapy could work as new spinal repair strategies. Moreover, with this type of treatment, the rehabilitation of subjects with spinal cord injury would be less expensive.

Keywords: Spinal cord injury; neuroprotection; neural regeneration; centella asiática; Wistar rats.


Palabras clave


Lesión de médula espinal; neuroprotección; regeneración neuronal; centella asiática; ratas Wistar.

Texto completo:

PDF

Referencias


Giménez R M, Gaviria M, Menet V, Privat A. Strategies for regeneration and repair in spinal cord traumatic injury. Prog Brain Res. 2002; 137:191-212.

Estrada MS, Carreón RA, Parra CMC, Ibarra PLC, Velasquillo MC, Vacanti CA, Belkind GJ. Lesión de médula espinal y medicina regenerativa. Salud Públ. Méx. 2007; 49: 437-444.

Fisher CG, Noonan VK, Smith DE, Wing PC, Dvorak MF, Kwon BK. Motor recovery, functional status, and health-related quality of life in patients with complete spinal cord injuries. Spine. 2005; 30: 2200-2207.

Belkas, JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004; 26: 151-160.

Vaquero J, Oya S, Zurita M. Estudio de la apoptosis oligodendroglial tras un traumatismo de la médula espinal y su modificación mediante la administración de metilprednisolona. Mapfre Med. 2004; 15: 91-100.

Caballero, S, Nieto-Sampedro M. Fisiopatología de la lesión medular. Vet. Méx. 2005; 200: 74-86.

González V. Fisiopatología de Médula Espinal: Daño Primario y Daño Secundario. Tesis de licenciatura en Q.F.B. Universidad Veracruzana. 2011; 80 Pp.

Pérez, CA; Concha, A; Hernández, ME, Manzo J. Influence of the paraventricular nucleus and oxytocin on the retrograde stain of pubococcygeus muscle motoneurons in male rats. Brain Res. 2005; 1041: 11-18.

Xu Y, Zheng Z, Ho KP, Qian Z. Effects of spinal cord injury on c-fos expression in hypothalamic paraventricular nucleus and supraoptic nucleus in rats. Brain Res 2006; 1087:175-179.

Del-Bel, E. A.; Borges, G. A. C.; Defino, H. L. A. y Guimarães, F. S. (2000) Induction of Fos protein immunoreactivity by spinal cord contusion. Braz J Med Biol Res. 2000; 33: 521-528.

Pérez CA, Chang E, López ML, Morgado C, Beltrán L, Martínez A, Coria G, Manzo J. Effect of spinal cord injury on the expression of c-Fos in the cerebellum of male rats. 2015; Annual Meeting Society for Neuroscience. Chicago, IL. USA. Abstract.

Aguayo AJ, Benfey M, David S. A potential for axonal regeneration in neurons of the adult mammalian nervous system. Birth Defects Orig Artic Ser. 1983; 19:327-340.

Nieto-Sampedro M, Lewis ER, Cotman CW, Manthorpe M, Skaper SD, Barbin G, Longo FM, Varon S. Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science. 1982; 217:860-861.

Ramon-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 1994; 127:232-244.

Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa A. Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. Int J Dev Neurosci. 2001; 19:63-83.

Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery alter spinal cord injury, Nature. 2002; 416:636-640.

National Institute of Neurological Disorders and Stroke (NINDS). Spinal Cord Injury: Hope Through Research. Available from: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Spinal-Cord-Injury-Hope-Through-Research. 2018.

Rodríguez Vélez A. Plasticidad de la Médula Espinal. Regeneración Luego de la Lesión, Boletín del Departamento de Docencia e Investigación IREP. 2004; 8:43-50.

Aloe L, Bianchi P, De Bellis A, Soligo M, Rocco ML. Intranasal nerve growth factor bypasses the bloodbrain barrier and affects spinal cord neurons in spinal cord injury. Neural Regen Res. 2014; 9: 1025-1030.

Ballesteros V, Marré B, Martínez C, Fleiderman J, Zamorano J. Lesión de la médula espinal: actualización bibliográfica: fisiopatología y tratamiento inicial. Coluna/Columna. 2012; 11: 75, 76

Li S, Wanga P, Tanga Y, Huanga L, Wub Y, Shena H. Analysis of methylprednisolone-induced inhibition on the proliferation of neural progenitor cells in vitro by gene expression profiling. Neurosci Lett. 2012; 526: 154– 159.

Díaz RA, Guízar SG, Ríos CC. Estrategias neuroprotectoras después de una lesión traumática de la médula espinal. Rev Med IMSS. 2002; 5: 437-455.

Nieto-Sampedro M, Collazos-Castro JE, Taylor JS, Gudiño-Cabrera G, Verdú-Navarro E, Pascual-Piédrola JI, Insausti-Serrano R. Trauma en el sistema nervioso central y su reparación. Rev Neurol. 2002; 35: 534-552.

Zbogar D, Eng JJ, Miller WC, Krassioukov AV, Verrier MC. Movement repetitions in physical and occupational therapy during spinal cord injury rehabilitation. J Spinal Cord Med. 2017; 55:172-179.

Alluin, O, Delivet-Mongrain, H, Rossignol S. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only. J Neurophysiol. 2015; 114, 1931-1946.

Martinez M, Delivet-Mongrain H, Rossignol S.Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats. J Neurophysiol. 2013; 109:2909-22.

Chin-Min Ch, Ching-Liang H, Tsai-Chung L, Jaung-Geng L. Acupuncture Stimulation at Baihui Acupoint Reduced Cerebral Infarct and Increased Dopamine Levels in Chronic Cerebral Hypoperfusion and Ischemia-Reperfusion Injured Sprague-Dawley Rats. Am J Chin Med 2007; 35:779–791.

Yan Q, Ruan JW, Ding Y, Li W, Li Y, Zeng Y. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp and Toxicol Pathol. 2011; 63: 151–156.

Yi-Fan Li, Tie Li, Da-Wei Zhang, Hui Xue, Dong Chen, Chen Li, and Fu-Chun Wang. The Comprehensive Therapy of Electroacupuncture Promotes Regeneration of Nerve Fibers and Motor Function Recovery in Rats after Spinal Cord Injury. Evid Based Complement Alternat Med. 2018; 2018:7568697.

Vidal-Casero MC. El desarrollo de la legislación sobre plantas medicinales en la comunidad europea y su incorporación en el ordenamiento jurídico español: su problemática. Derecho y Salud. 2003; 11, 1: Enero-Junio.

Genovese T, Mazzon E, Menegazzi M, Di Paola R, Muià C, Crisafulli C, Bramanti P, Suzuki H, Cuzzocrea S. Neuroprotection and enhanced recovery with Hypericum perforatum extract after experimental spinal cord injury in mice. SHOCK. 2006; 25:608-17.

Genovese T, Paterniti I, Mazzon E, Esposito E, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S. Efficacy of treatment with verbascoside, biotechnologically produced by Syringa vulgaris plant cell cultures in an experimental mice model of spinal cord trauma. Naunyn Schmiedebergs Arch Pharmacol. 2010; 4:331-45.

Matsuda H, Morikawa T, Ueda H, Yosikawa M. Medicinal foodstuffs XXVII. Saponin constituents of gotu kola(2): structures of new ursane- and oleanane type triterpene oligglycosides, centellasaponins B,C, and D, from Centella asiatica cultivated in Sria Lanka. Chem Pharm Bull; 2001, 49:1368-1371.

Alonso MJ. Centella asiática: una planta con historia e interesantes propiedades. 2009; Offarm 28: 98-104.

Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery P, Wegrowski Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999; 9:289-96.

Sampson JH, Raman A, Karlsen G, Navsaria H, Leigh IM. In Vitro keratinocyte antiproliferant effects of Centella asiatica extract and treterpenoid saponins. Phytomedic. 2001; 8: 230-235.

Brinkhaus B, Lindner M, Shuppan D, Han EG. Chemical, pharmacological and clinical prolife of the East Asian medical plant Centella asiatica. Phytomedic. 2000; 7: 427-448.

Howes MJR, Houghton PJ. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem and Behav. 2003; 75: 513–527.

Rao KGM, Rao SM, Rao S. Enhancement of amygdaloid neuronal dendritic arborization by fresh leaf juice of Centella asiatica (Linn) during growth spurt period in rats. Evid Based Complement Alternat Med. 2009; 2:203–210.

Gadahad MR, Rao M, Rao G. Enhancement of hippocampal CA3 neuronal dendritic arborization by Centella asiatica (Linn) fresh leaf extract treatment in adult rats. J Chin Med Assoc. 2008; 1: 6–13.

Dhanasekaran MLA, Holcomb AR. Hitt et al., Centella asiatica extract selectively decreases amyloid β levels in hippocampus of alzheimer’s disease animal model. Phytotherapy Res 2009 1:4–19.

Jiang H, Zheng G, Lv J, Chen H, Lin J, Li Y, Fan G, Ding X. Identification of Centella asiatica's Effective Ingredients for Inducing the Neuronal Differentiation. Evid Based Complement Alternat Med. 2016; 2016:9634750.

Pérez CA, López ML, Beltrán L, Sánchez D, Manzo J, Morgado C. El extracto acuoso de Centella asiática promueve la recuperación funcional después de la contusión de médula espinal en ratas. LIX Congreso Nacional de la Sociedad Mexicana de Ciencias Fisiológicas. Campeche, Camp. México. 2016. Cartel.




DOI: https://doi.org/10.25009/eb.v9i21.2534

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.