Incremento de receptores endocanabinoides cerebelares tras estimulación musical de ratas con autismo inducido postnatalmente

Daniela Monje Reyna, Luis Isauro García Hernández, Porfirio Carillo Castilla, Genaro Alfonso Coria Ávila, María Rebeca Toledo Cardenas, María Elena Hernández Aguilar, Jorge Manzo Denes

Resumen


El trastorno del espectro autista (TEA) comprende un complejo de alteraciones neurales del desarrollo, manifestadas de manera heterogénea pero destacando características constantes de anormalidades neuroanatómicas y funcionales en la estructura cerebelar. En este contexto se cuenta con amplia evidencia de que el sistema endocanabinoide desempeña un importante papel para la regulación de la neurotransmisión y transducción de señales tanto excitatorias como inhibitorias en el cerebelo, las cuales se encuentran afectadas en el TEA. En humanos con autismo, las intervenciones terapéuticas con estimulación musical han dado resultados exitosos para reestablecer diferentes conductas propias del trastorno; sin embargo, el estudio a nivel neural, específicamente en el cerebelo aún es limitado. Este trabajo implementó la estimulación musical en un modelo animal de autismo inducido después del nacimiento; se expuso a ratas Wistar con autismo inducido a música clásica para piano del compositor W.A. Mozart desde el día p1 al p30 y se evaluó la densidad de los receptores a canabinoides tipo 1 (CB1) en la corteza del flóculo cerebelar. Los análisis inmunohistoquímicos en la corteza cerebelosa revelaron que sujetos de ambos sexos que recibieron estimulación musical, presentaron mayor densidad en los receptores CB1. En las ratas macho se encontró una mayor densidad para las capas molecular y granular, mientras que en las hembras sólo se detectaron en la capa granular. Concluimos que la música tuvo un impacto en el sistema de señalización celular regulado por canabinoides en la corteza del flóculo cerebelar de ratas con autismo inducido, en donde se mostró un aumento en la densidad de receptores CB1.

 

Abstract

The autistic spectrum disorder (ASD) comprises a complex of neural alterations of development that are expressed in a heterogeneous manner, highlighting constant features of neuroanatomic and functional abnormalities in the cerebellar structure. In this context, there is wide evidence that the endocannabinoid system plays an important role in the regulation of neurotransmission and transduction of both excitatory and inhibitory signals in the cerebellum, which are affected in ASD. In humans with autism, therapeutic interventions with musical stimulation have given successful results to reestablish different behaviors characteristic of the disorder; however, at the neural level and specifically in the cerebellum studies are still limited. In this work, musical stimulation was implemented in an animal model of induced autism after birth. Wistar rats with induced autism were exposed to classical piano music by composer W.A. Mozart from day p1 to p30 and the density of cannabinoid receptors 1 (CB1) in the cortex of the cerebellar flocculus was evaluated. Immunohistochemical analyzes in the cerebellar cortex revealed that subjects of both sexes who received musical stimulation presented higher density in CB1 receptors. In male rats a higher density was found for the molecular and granular layers, whereas in females they were only detected in the granular layer. We concluded that music had an impact at the cellular signaling regulated by cannabinoids in rats with induced autism on the flocculus cerebellar cortex, where there were an increase on CB1 receptors.

 

Keywords: Autism; behavior; music stimulation; valproate; CB1 receptors.


Palabras clave


Autismo; conducta; estimulación musical; valproato; receptores CB1.

Texto completo:

PDF

Referencias


Arndt TL, Stodgell CJ, Rodier PM. The teratology of autism. Review. Int J Dev Neurosci. 2005; 23(2-3):189-99.

Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacol. 2005; 30(1):80-9.

Chomiak T, Karnik V, Block E, Hu B. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism. BMC Neurosci. 2010; 11:102.

Reynolds S, Millette A, Devine DP. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev Neurosci. 2012; 34(2-3):258-67.

Donovan AP, Basson MA. The neuroanatomy of autism - a developmental perspective. J Anat. 2017; 230(1):4-15.

Gomes E, Pedroso FS, Wagner MB. Auditory hypersensitivity in the autistic spectrum disorder. Pro Fono. 2008; 20(4):279-84. Review.

Porges SW, Bazhenova OV, Bal E, Carlson N, Sorokin Y, Heilman KJ, Cook EH, Lewis GF. Reducing auditory hypersensitivities in autistic spectrum disorder: preliminary findings evaluating the listening project protocol. Front Pediatr. 2014; 2:80.

Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009; 44(2):489-501.

Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B,Bakshinskaya DE, Wang SS. Normal cognitive and social development require posterior cerebellar activity. eLife. 2018; 7 e36401.

Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013; 80(3):807-15.

Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. Handb Clin Neurol. 2018; 155:61-72.

Sens PM, de Almeida CI. Participation of the cerebellum in auditory processing. Braz J. Otorhinolaryngol. 2007; 73(2):266-70. Review.

Winkelman B, Frens M. Motor coding in floccular climbing fibers. JNeurophysiol. 2006; 95(4):2342-51.

Azizi SA, Burne RA, Woodward DJ. The auditory corticopontocerebellar projection in the rat: inputs to the paraflocculus and midvermis. An anatomical and physiological study. Exp Brain Res. 1985; 59(1):36-49.

Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL,Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017; 134(4):537-566.

Ergaz Z, Weinstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol. 2016; 64:116-40.

Trezza V, Vanderschuren LJ. Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology (Berl). 2008; 197(2):217-27.

Viveros MP, Marco EM, López-Gallardo M, Garcia-Segura LM, Wagner EJ. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev. 2011; 35(8):1740-51.

Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res.2013; 249:124-32.

Chakrabarti B, Persico A, Battista N, Maccarrone M. Endocannabinoid Signaling in Autism. Neurotherapeutics. 2015; 12(4):837-47.

Safo PK, Cravatt BF, Regehr WG. Retrograde endocannabinoid signaling in the cerebellar cortex. Cerebellum. 2006; 5(2):134-45. Review.

Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M. The Cannabinoid CB1 Receptor Mediates Retrograde Signals for Depolarization-Induced Suppression of Inhibition in Cerebellar Purkinje Cells. The Journal of Neuroscience. 2002; 1:22(5):690–1697.

Hashimotodani Y, Ohno-shosaku T, Kano M. Endocannabinoids and Synaptic Function in the CNS. The Neuroscientist. 2007; 13 (2):127-137.

Simpson K, Keen D. Music interventions for children with autism: narrative review of the literature. J Autism Dev Disord. 2011; 41(11):1507-14.

Wigram T, Gold C. Music therapy in the assessment and treatment of autistic spectrum disorder: clinical application and research evidence. Child Care Health Dev. 2006; 32(5):535-42. Review.

DePape AM R; Hall GBC; Tillmann B; Trainor LJ. Auditory Processing in High-Functioning Adolescents with Autism Spectrum Disorder. PLoS ONE. 2012; 7(9) e44084.

Wan CY, Schlaug G. Neural pathways for language in autism: The potential for music-based treatments. Future Neurology. 2010; 5:797–805.

Rausher FH; Robinson D; y Jens JJ. Improved maze learning through early music exposure in rats. Neurological Research. 1998; 20(5):427-432.

Amagdei A, Balteş FR, Avram J, Miu AC. Perinatal exposure to music protects spatial memory against callosal lesions. Int J Dev Neurosci. 2010; 28(1):105-9.

Oguchi-Katayama A, Monma A, Sekino Y, Moriguchi T, Sato K. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. J Toxicol Sci. 2013; 38(3):391-402.

Zarrans J.J Neurofarmacología contemporánea. Elsevier. España. 2011.

Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. Synaptically driven endocannabinoid release requires Ca2+- assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci. 2005; 25(29):6826–35.

Südhof TC, Starke K. Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology 184. Springer-Verlag Berlin Heidelberg. 2008.

Sheikhi S, Saboory E. Neuroplasticity Changes of Rat Brain by Musical Stimuli during Fetal Period. Cell J. 2015; 16(4):448-55.

Mackie K, Stella N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 2006; 8(2):298-306.

Sudarov A. Defining the role of cerebellar Purkinje cells in autism spectrum disorders. Cerebellum. 2013; 12(6):950-5.

Jung KM, Mangieri R, Stapleton C, Kim J, Fegley D, Wallace M, Mackie K, Piomelli D. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors. Mol Pharmacol. 2005; 68(5):1196–1202.

Dean SL, McCarthy MM. Steroids, sex and the cerebellar cortex: implications for human disease. Cerebellum. 2008; 7(1):38-47.

Crespo CN, García LI, Coria Genaro A, Carrillo P, Hernández ME, Manzo J. Mejora de las habilidades motoras y cognitivas de niños con autismo después de un periodo prolongado de juego con deportes virtuales. Revista eNeurobiología 2016. 7(15).

Goddard L, Dritschel B, Howlin P. A preliminary study of gender differences in autobiographical memory in children with an autism spectrum disorder. J Autism Dev Disord. 2014; 44(9):2087-95.

Petacchi A, Laird AR, Fox PT, Bower JM. Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp. 2005; 25(1):118-28.

Halladay AK, Bishop S, Constantino JN, Daniels AM, Koenig K, Palmer K, Messinger D, Pelphrey K, Sanders SJ, Singer AT, Taylor JL, Szatmari P. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism. 2015; 13; 6:36.

Werling DM. The role of sex-differential biology in risk for autism spectrum disorder. Biol Sex Differ. 2016; 16; 7:58.

Viveros MP, Marco EM, López-Gallardo M, Garcia-Segura LM, Wagner EJ. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev. 2011; 35(8):1740-51.

Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res.2013; 15; 249:124-32.




DOI: https://doi.org/10.25009/eb.v10i23.2540

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.