Functional modularization of a Neurocranium: a robotic brain for a robotic body

José Negrete-Martínez, Roberto Cruz-Estrada, Santiago Negrete-Yankelevich

Resumen


Hemos diseñado y construido un neurocráneo modular con módulos funcionales que van desde módulos esqueléticos, módulos motores, módulos pre-motores, módulos sensoriales y hasta módulos de integración. Mostraremos que los módulos superiores, los de integración, están determinados por la naturaleza de sus precedentes los módulos sensoriales y motores, y que estos últimos, a su vez, están determinados por los módulos esqueléticos en una verdadera cascada modular funcional que refuerza la posición filosófica de que hay un cerebro específico para cada cuerpo.


Abstract

We have designed and constructed a modular neurocranium with functional modules from skeleton modules, motor modules, pre-motor modules, sensorial modules, and even integrative modules. We will show that the superior modules, the integrative ones, are determined by the nature of their precedent sensorial and motor modules, and that these last ones, in turn, are determined by the skeleton modules in a true modular functional cascade that reinforces the philosophical position that there is a specific brain for each body.

Key words: Robotic head; functional modularity; neurocranium; neuromorphism.



Palabras clave


Cabeza robótica; modularidad funcional; neurocráneo; neuromorfismo.

Texto completo:

PDF

Referencias


Functional decomposition, (n. d.).Wikipedia. http://en.wikipedia.org/wiki/Functional_decomposition.

Negrete-Martínez J, Cruz-Estrada R, and Negrete-Yankelevich S. Prerequisites for a neurobotic head device. Revista eNeurobiología. 2015 6(12):020615. Available on:http://www.uv.mx/eneurobiologia/vols/2015/12/Negrete/Negrete6%2812%29020615.pdf

Krichmar JL and Edelman GM. Principles Underlying the Construction of Brain-Based Devices. University of Bristol. 2006 pp 37-42.Mead C. Neuromorphic electronic systems. Proc IEEE 1990 78:10 1629-36.

Raff RA. Why modular Philosophical reason. The shape of life. Chicago University Press, Chicago. 1996 pp 326.

Potkonjak V, Svetozarevic B, Jovanovic K, Holland O. The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic system, Int J Adv Robot Syst 2012 8: 143-155.

Brooks, RA, Stein, LA. Building Brains for Bodies. Auton Robot 1994 1: 7-25.

Shibata T, Vijayakumar S, Conradt J, Schaal S. Biomimetic oculomotor control. Adapt Behav 2001 9: 3-4 189–207.

Biamino D, Cannata G, Maggiali M, Piazza A. MAC-EYE: a tendon driven fully embedded robot eye. 5th IEEE-RAS ICHR 2005 62-67.

Processing library: http://www.processing.org/

Bolina O, Monteiro LHA. Kinematics of eye movement. Ophthal Physl Opt 2000 20:1 59-62.

Sherwood L. Human Physiology: From Cells to Systems. CENGAGE Learning 2013; 134-184.

Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 2002 25: 10 525–531.

Buizza A and Schmid R. Velocity characteristics of smooth pursuit eye movements to different patterns of target motion. Exp Brain Res 1986; 63:2 395-401.

Nagel T. What is it like to be a bat? Philos Rev 1974 83: 4 435-450.

Sandini G, Metta G. Retina-like sensors: motivations, technology and applications. In: Sensors and Sensing in Biology and Engineering. Springer Verlag, New York 2002; 251-262.

Werblin FS. Control of retinal sensitivity. II. Lateral interactions at the outer plexiform layer. J Gen Physiol 1974 63:1 62–87.

Negrete-Yankelevich S and Negrete-Martínez J. Visuomotor coordination neuromorphic model: gazing expression in robotic heads and cyborg heads. ICABB, Venice, Italy. 2010.

Kosslyn SM and Koenig O. Wet Mind: The New Cognitive Neuroscience. The Free Press, New York 1992 pp 44-46.




DOI: https://doi.org/10.25009/eb.v7i15.2572

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.