Evaluación de la actividad termorreguladora y cardiovascular durante el sueño

Erik Leonardo Mateos Salgado, Fructuoso Ayala Guerrero, Benjamín Domínguez Trejo

Resumen


La actividad termorreguladora y cardiovascular presentan ritmicidad circadiana asociada con el ciclo vigilia-sueño. El uso de la polisomnografía (PSG) ha facilitado el estudio de la temperatura corporal y actividad cardiovascular tanto durante el sueño con movimientos oculares rápidos (MOR) como del sueño sin MOR (NMOR). Sin embargo, existen pocos estudios que han evaluado la temperatura corporal y actividad cardiovascular a lo largo de los ciclos NMOR-MOR. El objetivo de este estudio fue evaluar las características de la temperatura periférica y variabilidad de la frecuencia cardiaca durante los ciclos NMOR-MOR. Se realizaron estudios de PSG en 15 participantes sanos donde se analizaron la temperatura periférica, la arritmia sinusal respiratoria (ASR) y la frecuencia baja (FB). Los análisis estadísticos muestran que en la temperatura periférica hubo diferencias significativas entre las diferentes fases de sueño, mientras que los valores de la ASR y la FB variaron significativamente tanto entre las diferentes fases de sueño como entre los ciclos NMOR-MOR. Se ha descrito que la respuesta termorreguladora es diferente entre el sueño NMOR y MOR, en este estudio se observaron diferencias significativas en la temperatura periférica entre las fases de sueño N2, N3 y MOR. Estos resultados resaltan diferencias en los mecanismos reguladores de la temperatura y de la actividad cardiovascular cuando se considera la ciclicidad del sueño NMOR y MOR.


Abstract

Thermoregulatory and cardiovascular activity show circadian rhythmicity associated with the wake-sleep cycle. The use of polysomnography (PSG) has facilitated the study of body temperature and cardiovascular activity during both rapid eye movement (REM) and non-REM (NREM) sleep. However, few studies have evaluated body temperature and cardiovascular activity throughout the NREM-REM cycles. This study aimed to evaluate the characteristics of peripheral temperature and heart rate variability during NREM-REM cycles. PSG studies were performed in 15 healthy participants where peripheral temperature, respiratory sinus arrhythmia (RSA), and low frequency (LF) were analyzed. Statistical analyses show that in peripheral temperature there were significant differences between the different sleep stages, while RSA and LF values varied significantly both between sleep stages and between NREM-REM cycles. The thermoregulatory response has been described to be different between NREM and REM sleep, in this study, significant differences in peripheral temperature were observed between N2, N3, and REM sleep stages. These results highlight differences in the regulatory mechanisms of temperature and cardiovascular activity when considering the cyclicity of NREM and REM sleep.

Keywords: Peripheral temperature; heart rate variability; autonomic nervous system; biological rhythms.


Palabras clave


Temperatura periférica; variabilidad de la frecuencia cardiaca; sistema nervioso autónomo; ritmos biológicos.

Texto completo:

PDF

Referencias


Gilbert SS, van den Heuvel CJ, Ferguson SA, Dawson D. Thermoregulation as a sleep signaling system. Sleep Med Rev 2004 8: 81-93.

Kräuchi K, Cajochen C, Wirz-Justice A. Thermophysiologic aspects of the three-process-model of sleepiness regulation. Clin Sports Med 2005 24: 287-300.

Van den Heuvel CJ, Ferguson SA, Gilbert SS, Dawson D. Thermoregulation in normal sleep and insomnia: the role of peripheral heat loss and new applications for digital thermal infrared imaging (DITI). J Therm Biol 2004 29: 457-61.

Mekjavic IB, Eiken O. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans. J Appl Physiol 2006 100: 2065-72.

Van Someren EJW. Mechanisms and functions of coupling between sleep and temperature rhythms. Prog Brain Res 2006 153: 309-24.

Bach V, Telliez F, Libert JP. The interaction between sleep and thermoregulation in adults and neonates. Sleep Med Rev 2002 6: 481-92.

Raymann RJ, Swaab DF, Van Someren EJ. Skin temperature and sleep-onset latency: changes with age and insomnia. Physiol Behav, 2007 90: 257-66.

Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED. Timing of REM is coupled to the circadian rhythm of body temperature in man. Sleep 1980 2: 329-46.

Ortiz-Tudela E, Martinez-Nicolas A, Albares J, Segarra F, Campos M, Estivill E, Rol MA, Madrid J. Ambulatory circadian monitoring (ACM) based on thermometry motor activity and body position (TAP): a comparison with polysomnography. Physiol Behav 2014 126: 30-8.

Carskadon MA, Dement WC. Normal human sleep: An overview. En: Kryger MH, Roth T and Dement WC, Principles and practice of sleep medicine. Elsevier 2017 15-24.

Burgess HJ, Holmes AL, Dawson D. The relationship between slow-wave activity, body temperature, and cardiac activity during nighttime sleep. Sleep 2001 24: 343-49.

Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 2019 16: 437–47.

Boudreau P, Yeh WH, Dumont GA, Boivin DB. Circadian variation of heart rate variability across sleep stages. Sleep 2013 36: 1919-28.

Stein PK, Yachuan P. Heart rate variability, sleep and sleep disorders. Sleep Med Rev 2012 16: 47-66.

Tobaldini E, Nobili L, Strada S, Casali KR, Braghiroli A, Montano N. Heart rate variability in normal and pathological sleep. Front Physiol 2013 4: 294.

Versace F, Mozzato M, De Min Tona G, Caballero C, Stegagno L. Heart rate variability during sleep as a function of the sleep cycle. Biol Psychol 2003 63: 149-62.

Baker FC, Siboza F, Fuller A. Temperature regulation in women: effects of the menstrual cycle. Temperature 2020 7: 226-62.

Maijala A, Kinnunen H, Koskimäki H, Jämsä T, Kangas M. Nocturnal finger skin temperature in menstrual cycle tracking: ambulatory pilot study using a wearable Oura ring. BMC Womens Health 2019 19: 150.

Iber C, Ancoli-Israel S, Chesson AL, Quan SF. The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specifications. American Academy of Sleep Medicine, Illinois. 2007.

Allen JJB, Chambers AS, Towers DN. The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biol Psychol 2007 74: 243-62.

Pallant, J. SPSS survival manual: a step by step guide to data analysis using IBM SPSS.: Open University Press/McGraw-Hill, Maidenhead. 2016.

Parmeggiani PL. Thermoregulation and sleep. Front Biosci 2003 8: s557-67.

Zoccoli G, Amici R. Sleep and autonomic nervous system. Curr Opin Physiol 2020 15: 128-33.

Cerri M, Luppi M, Tupone D, Zamboni, Amici R. REM sleep and endothermy: potential sites and mechanism of a reciprocal interference. Front Physiol 2017 8: 624.

Parmeggiani PL. Influence of the temperature signal on sleep in mammals. Biol Signals Recept 2000 9: 279-82.

Affanni JM, Lisogorsky E, Scaravilli AM. Sleep in the giant South American armadillo Priodontes giganteus (Edentata, Mammalia). Experientia 1972 28: 1046–1047.

Sagot JC, Amoros V, Candas V, Libert JP. Sweating responses and body temperature during nocturnal sleep in humans. Am J Physiol 1987 252: R462-70.

Wehr TA. A brain-warming function for REM sleep. Neurosci Biobehav Rev 1992 16: 379-97.

Krauchi K, Deboer T. The interrelationship between sleep regulation and thermoregulation. Front Biosci 2010 15: 604-25.

Pallubinsky H, Schellen L, van Marken Lichtenbelt WD. Exploring the human thermoneutral zone – A dynamic approach. J Therm Biol 2019 79: 199-208

Johnson JM, Kellog DLJr. Thermoregulatory and thermal control in the human cutaneous circulation. Front Biosci 2010 2: 825-53.

Brocas J, Fromageot C. Thermoregulation in homeotherms: central temperature results from optimization of energy transfers. Biol Cybern 1996 74: 225-34.

Trinder J, Waloszek J, Woods ML, Jordan AS. Sleep and cardiovascular regulation. Pflugers Arch 2012 463: 161-8.

Burgess HJ, Penev PD, Schneider R, Van Cauter E. Estimating cardiac autonomic activity during sleep: impedance cardiography, spectral analysis, and Poincaré plots. Clin Neurophysiol 2004 115: 19-28.

Laborde S, Mosley LS, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research. Recommendations for experiment planning, data analysis, and data reporting. Front Psychol 2017 8: 213.

Lewis GF, Furman SA, McCool MF, Porges SW. Statistical strategies to quantify respiratory sinus arrhythmia: are commonly used metrics equivalent? Biol Psychol 2012 89: 349-64.

Reyes del Paso G, Langewitz W, Mulder LJM, Van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology. 2013 50: 477-87.

Taylor NAS, Tipton MJ, Kenny GP. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 2014 46: 72-101.

Anders D, Gompper B, Kräuchi K. A two-night comparison in the sleep laboratory as a tool to challenge the relationship between sleep initiation, cardiophysiological and thermoregulatory changes in women with difficulties initiating sleep and thermal discomfort. Physiol Behav 2013 114-115: 77-82.




DOI: https://doi.org/10.25009/eb.v13i31.2596

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.