Los receptores muscarínicos como potencial objetivo terapéutico en la esquizofrenia

José Eduardo López Villa

Resumen


La esquizofrenia es una enfermedad mental crónica caracterizada por tres conjuntos de síntomas: positivos, negativos y cognitivos. Aunque los primeros han logrado abordarse con los actuales fármacos antipsicóticos, un 20-30 % de pacientes no muestra respuesta y el perfil de efectos secundarios metabólicos y motores limita su uso en algunos casos. Durante mucho tiempo se explicó la presencia de dichas manifestaciones clínicas con la hipótesis dopaminérgica; sin embargo, terminó demostrándose como una explicación incompleta, a la vez que se involucraron otros sistemas de neurotransmisores, como el colinérgico. En este sentido, la acetilcolina se ha involucrado en funciones como la memoria, la atención y el aprendizaje, así como la regulación del sistema dopaminérgico. Además de los efectos antipsicóticos de fármacos que apuntan a sus receptores muscarínicos, como la xanomelina y la emraclidina, ha incrementado el interés en ese neurotransmisor como un objetivo en la búsqueda de nuevos medicamentos antipsicóticos. Así, el objetivo de este artículo es presentar una revisión de la literatura médica relacionada con la implicación de la acetilcolina, y particularmente de los receptores muscarínicos, en la esquizofrenia, y los esfuerzos por el desarrollo de nuevos fármacos antipsicóticos que apunten directamente al sistema colinérgico.

Abstract

Schizophrenia is a chronic mental illness characterized by three sets of symptoms: positive, negative, and cognitive. Although the positive symptoms have been managed with present-day antipsychotic agents, 20 to 30% of patients do not show response and the profile of metabolic and motor adverse effects limits its use in some cases. Furthermore, for a long time the existence of these clinical manifestations has been explained with the dopaminergic hypothesis. Nevertheless, it ended up being demonstrated as an incomplete explanation and other neurotransmitter systems have been involved, such as the cholinergic system. Acetylcholine has been related to mental functions such as memory, attention, and learning, just as with the regulation of the dopaminergic system. The above, together with the observed antipsychotic effects of drugs that target muscarinic receptors, such as xanomeline and emraclidine, have increased interest in this neurotransmitter as an objective in the search for new antipsychotic medications. This article aims to review the medical literature related to the involvement of acetylcholine, and particularly muscarinic receptors, in schizophrenia and the efforts to develop new antipsychotic drugs that directly target the cholinergic system.

Keywords: schizophrenia, acetylcholine, muscarinic receptors, cholinergic system, antipsychotic agents.



Palabras clave


Esquizofrenia; acetilcolina; receptores muscarínicos; sistema colinérgico; antipsicóticos.

Texto completo:

PDF HTML

Referencias


Galletly C, Castle D, Dark F, Humberstone V, Jablensky A, Killanckey E, Kulkarni J, McGorry P, Nielssen O y Tran N. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for the management of schizophrenia and related disorders. Aust N Z J Psychiatry. 2016, 50(5): 410-472.

Asociación Estadounidense de Psiquiatría. Manual diagnóstico y estadístico de los trastornos mentales. (DSM-5). Asociación Estadounidense de Psiquiatría, Arlington, 2014, pp 99.

Organización Mundial de la Salud. Schizophrenia. Ginebra: Organización Mundial de la Salud, 2022. Disponible en: https://www.who.int/news-room/fact-sheets/detail/schizophrenia.

Escamilla-Orozco RI, Becerra-Palars C, Armendáriz-Vázquez Y, Corlay-Noriega ISY, Herrera-Estrella MA, Llamas-Núñez RE, Meneses-Luna O, Quijada-Gaytán JM, Reyes-Madrigal F, Rosado-Franco A, Rosel-Vales M, Saucedo-Uribe E. Tratamiento de la esquizofrenia en México: recomendaciones de un panel de expertos. Gac Med Mex. 2021, 157(Supl 4): S1-S12.

FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, McGrath JJ, Whiteford HA. Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophr Bull. 2018, 44(6): 1195-1203.

Freudenreich O, Brown HE, Holt DJ. Psychosis and Schizophrenia. En Stern TA, Fava M, Wilens TE, Rosenbaum JF, Massachusetts General Hospital Comprehensive Clinical Psychiatry. Elsevier, 2016, 307-323.

Correl CU, Schooler NR. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatr Dis Treat. 2020, volumen 2020(16): 519-534.

Gebreegziabhere Y, Habatmu K, Mihretu A, Cella M, Alem A. Cognitive impairment in people with schizophrenia: an umbrella review. Eur Arch Psychiatry Clin Neurosci. 2022, 272(7): 1139-1155.

Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res. 2015, 161(1): 4-18.

Andreasen NC. The core dimensions of schizophrenia. En Geddes JR, Andreasen NC, Goodwin GM, New Oxford Textbook of Psychiatry. Oxford University Press, Oxford, 2020, 565-573.

Heilbronner U, Samara M, Leucht S, Falkai P, Schulze TG. The Longitudinal Course of Schizophrenia Across the Lifespan: Clinical, Cognitive, and Neurobiological Aspects. Harv Rev Psychiatry. 2016, 24(2): 118-128.

Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, O’Donovan M, Correll CU, Kane JM, van Os J, Insel TR. Schizophrenia. Nat Rev Dis Primers. 2015, 12:1:15067.

Meyer JM, Correll CU. Increased Metabolic Potential, Efficacy and Safety of Emerging Treatments in Schizophrenia. CNS Drugs. 2023, 37(7): 545-570.

Wilkes SL, Ross DA. The Boy in the Borstal: Gene Hunting, Dopaminergic Dogma, and the Science of Schizophrenia. Biol Psychiatry. 2023, 93(4): e7-e9.

Morant N, Azam K, Johnson S, Moncrieff J. The least worst option: user experiences of antipsychotic medication and lack of involvement in medication decisions in a UK community sample. J Ment Health. 2018, 27(4): 322-328.

Stahl SM, Sy S, Maguire GA. How and when to treat the most common adverse effects of antipsychotics: Expert review from research to clinical practice. Acta Psychiatr Scand. 2021, 143(2): 172-180.

Schick B, Barth E, Mayer B, Weber CL, Hagemeyer T, Schönfeldt C. Prospective, observational, single-centre cohort study with an independent control group matched for age and sex aimed at investigating the significance of cholinergic activity in patients with schizophrenia: study protocol of the CLASH-study. BMJ Open. 2021, 11(12): e050501.

Machado Costa K, Schoenbaum G. Dopamine. Curr Biol. 2022, 32(15): R817-R824.

Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr. 2018, 23(3): 187-191.

Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules. 2018, 23(8): 2087.

Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P T. 2014, 39(9): 638-645.

McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020, 19(1): 15-33.

Tsapakis EM, Diakaki K, Miliaras A, Fountoulakis KN. Novel Compounds in the Treatment of Schizophrenia-A Selective Review. Brain Sci. 2023, 13(8): 1193.

Tandon R, Nasrallah H, Akbarian S, Carpenter Jr. WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller, JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res. 2024, 264: 1-28.

Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry. 2022, 12(1): 500.

Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019, 73(5): 204-215.

de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry. 2017, 8: 118.

Jahangir M, Zhou JS, Lang B, Wang XP. GABAergic System Dysfunction and Challenges in Schizophrenia Research. Front Cell Dev Biol. 2021. 9: 663854.

Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014, 45: 233-245.

Sumiyoshi T, Kunugi H, Nakagome K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci. 2014, 8: 395.

Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am J Psychiatry. 2022, 179(9): 611-627.

Stahl, SE. 5 - Targeting Dopamine and Serotonin Receptors for Psychosis, Mood, and Beyond: So-Called “Antipsychotics”. En Stahl, SE. Stahl's Essential Psychopharmacology Neuroscientific Basis and Practical Applications. Cambridge University Press, 2021, 159-243.

Brown DA. Acetylcholine and cholinergic receptors. Brain Neurosci Adv. 2019: 3.

van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol. 2021, 11: 606656.

Moran SP, Maksymetz J, Conn PJ. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends Pharmacol Sci. 2019, 40(12): 1006-1020.

Thomsen M, Sørensen G, Dencker D. Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology. 2018, 136(Part C): 411-420.

Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012, 76(1): 116-129.

Wess J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci. 2003, 24(8): 414-420.

Eickhoff S, Franzen L, Korda A, Rogg H, Trulley VN, Borgwardt S, Avram M. The Basal Forebrain Cholinergic Nuclei and Their Relevance to Schizophrenia and Other Psychotic Disorders. Front Psychiatry. 2022, 13: 909961.

Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. Adv Pharmacol. 2019, 86: 153-196.

Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Neurotransmisión Colinérgica Central: Aspectos Moleculares. Rev Mex Neuroci. 2017, 18(2): 76-87.

Jakubik J, El-Fakahany EE. Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules. 2020, 10(2): 325.

Vargas R, Soley J. Modulación Alostérica Positiva selectiva para el receptor muscarínico M1: descubrimiento y desarrollo del compuesto VU0486846 y su importancia para el desarrollo de tratamientos para el Alzheimer y la Esquizofrenia. Ars Pharm. 2021, 62(1): 90-111.

Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov. 2014, 13(7): 549-560.

Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits. 2019, 13: 24.

Ryan AE, Mowry BJ, Kesby JP, Scott JG, Greer JM. Is there a role for antibodies targeting muscarinic acetylcholine receptors in the pathogenesis of schizophrenia? Aust N Z J Psychiatry. 2019, 53(11): 1059-1069.

Erskine D, Taylor JP, Bakker G, Brown AJH, Tasker T, Nathan PJ. Cholinergic muscarinic M1 and M4 receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov Today. 2019, 24(12): 2307-2314.

Sumi T, Harada K. Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway. iScience. 2023, 26(3): 106133.

Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci. 2023, 17: 1124333.

Lebois EP, Thorn C, Edgerton JR, Popiolek M, Xi S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology. 2018, 136(Pt C): 362-373.

Cieślik P, Wierońska JM. Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery. Int J Mol Sci. 2020, 21(22): 8811.

Bakker G, Vingerhoets C, Boucherie D, Caan M, Bloemen O, Eersels J, Booij J, van Amelsvoort T. Relationship between muscarinic M1 receptor binding and cognition in medication-free subjects with psychosis. Neuroimage Clin. 2018, 18: 713-719.

Bakker G, Vingerhoets WA, van Wieringen JP, de Bruin K, Eersels J, de Jong J, Chahid Y, Rutten BP, DuBois S, Watson M, Mogg AJ, Xiao H, Crabtree M, Collier DA, Felder CC, Barth VN, Broad LM, Bloemen OJ, van Amelsvoort TA, Booij J. 123I-Iododexetimide Preferentially Binds to the Muscarinic Receptor Subtype M1 In Vivo. J Nucl Med. 2015, 56(2): 317-322.

Stuke H. Markers of muscarinic deficit for individualized treatment in schizophrenia. Front Psychiatry. 2023, 13: 1100030.

Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry. 2009, 14(11): 1017-1023.

Dean B, Scarr E. Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 2020, 288: 112989.

Vaidya S, Guerin AA, Walker LC, Lawrence AJ. Clinical Effectiveness of Muscarinic Receptor-Targeted Interventions in Neuropsychiatric Disorders: A Systematic Review. CNS Drugs. 2022, 36(11): 1171-1206.

Yohn SE, Weiden PJ, Felder CC, Stahl SM. Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol Sci. 2022, 43(12): 1098-1112.

Yohn SE, Conn PJ. Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology. 2018, 136(Pt C): 438-448.

Amato D, Canneva F, Cumming P, Maschauer S, Groos D, Dahlmanns JK, Grömer TW, Chiofalo L, Dahlmanns M, Zheng F, Kornhuber J, Prante O, Alzheimer C, von Hörsten S, Müller CP. A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter. Mol Psychiatry. 2020, 25(9): 2101-2118.

Kantrowitz JT, Correll CU, Jain R, Cutler AJ. New Developments in the Treatment of Schizophrenia: An Expert Roundtable. Int J Neuropsychopharmacol. 2023, 26(5): 322-330.

Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res. 2021, 405: 113201.

Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol. 2022, 13: 974160.

Jones SE, Harvey PD. Cross-diagnostic determinants of cognitive functioning: the muscarinic cholinergic receptor as a model system. Transl Psychiatry. 2023, 13(1): 100.

Kidambi N, Elsayed OH, El-Mallakh RS. Xanomeline-Trospium and Muscarinic Involvement in Schizophrenia. Neuropsychiatr Dis Treat. 2023, 19: 1145-1151.

Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron. 2017, 94(3): 431-446.

Chambers NE, Millett M, Moehle MS. The muscarinic M4 acetylcholine receptor exacerbates symptoms of movement disorders. Biochem Soc Trans. 2023, 51(2): 691-702.

Foster DJ, Choi DL, Conn PJ, Rook JM. Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. Neuropsychiatr Dis Treat. 2014, 10: 183-191.

Bender AM, Jones CK, Lindsley CW. Classics in Chemical Neuroscience: Xanomeline. ACS Chem Neurosci. 2017, 8(3): 435-443.

Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N Engl J Med. 2021, 384(8): 717-726.

Correll CU, Angelov AS, Miller AC, Weiden PJ, Brannan SK. Safety and tolerability of KarXT (xanomeline-trospium) in a phase 2, randomized, double-blind, placebo-controlled study in patients with schizophrenia. Schizophrenia (Heidelb). 2022, 8(1): 109.

Kaul I, Sawchak S, Correll CU, Kakar R, Breier A, Zhu H, Miller AC, Paul SM, Brannan SK. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet. 2024, 403(10422): 160-170.

Kaul I, Sawchak S, Walling DP, Tamminga CA, Breier A, Zhu H, Miller AC, Paul SM, Brannan SK. Efficacy and Safety of Xanomeline-Trospium Chloride in Schizophrenia: A Randomized Clinical Trial. JAMA Psychiatry. 2024, e240785.

Organización Mundial de la Salud (s.f.). NCT04659174. Ginebra: Plataforma de Registros Internacionales de Ensayos Clínicos. Disponible en: https://trialsearch.who.int/Trial2.aspx?TrialID=NCT04659174.

Organización Mundial de la Salud (s.f.). NCT04820309. Ginebra: Plataforma de Registros Internacionales de Ensayos Clínicos. Disponible en: https://trialsearch.who.int/Trial2.aspx?TrialID=NCT04820309.

Organización Mundial de la Salud (s.f.). NCT05145413. Ginebra: Plataforma de Registros Internacionales de Ensayos Clínicos. Disponible en: https://trialsearch.who.int/Trial2.aspx?TrialID=NCT05145413.

Organización Mundial de la Salud (s.f.). NCT05919823. Ginebra: Plataforma de Registros Internacionales de Ensayos Clínicos. Disponible en: https://trialsearch.who.int/Trial2.aspx?TrialID=NCT05919823.

Bock A, Schrage R, Mohr K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology. 2018, 136(Pt C): 427-437.

Hopper S, Pavey GM, Gogos A, Dean B. Widespread Changes in Positive Allosteric Modulation of the Muscarinic M1 Receptor in Some Participants With Schizophrenia. Int J Neuropsychopharmacol. 2019, 22(10): 640-650.

Krystal JH, Kane JM, Correll CU, Walling DP, Leoni M, Duvvuri S, Patel S, Chang I, Iredale P, Frohlich L, Versavel S, Perry P, Sanchez R, Renger J. Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet. 2022, 400(10369): 2210-2220.

Organización Mundial de la Salud (s.f.). NCT05227703. Ginebra: Plataforma de Registros Internacionales de Ensayos Clínicos. Disponible en: https://trialsearch.who.int/Trial2.aspx?TrialID=NCT05227703.




DOI: https://doi.org/10.25009/eb.v15i38.2633

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.