El uso de biomarcadores en la epilepsia del lóbulo temporal

Manola Cuéllar Herrera

Resumen


Los biomarcadores desempeñan un papel crucial en el diagnóstico, pronóstico y manejo de las enfermedades. En el caso de la epilepsia del lóbulo temporal, su uso se ha centrado en hallazgos electrofisiológicos, de neuroimagen y moleculares, con el objetivo de caracterizar la enfermedad y a personalizar el tratamiento a futuro. Esta revisión se enfocará en proporcionar información sobre posibles biomarcadores en la epilepsia del lóbulo temporal. Los estudios electroencefalográficos han identificado patrones característicos de actividad eléctrica, como descargas interictales de oscilaciones de alta frecuencia, las espigas interictales y actividad de onda lenta. Los estudios de neuroimagen, como la resonancia magnética, son fundamentales para detectar anomalías estructurales, entre ellas la esclerosis hipocampal, un marcador característico de epilepsia del lóbulo temporal. Como biomarcador, la resonancia magnética ofrece un enfoque no invasivo y clínicamente aplicable para detectar indicios tempranos de epileptogénesis y monitorear la progresión de la enfermedad. Las alteraciones moleculares, incluidas las sinápticas, inflamatorias y epigenéticas, han adquirido una importancia creciente en la comprensión de esta enfermedad. La detección de moléculas está emergiendo como una herramienta prometedora, ya que pueden identificarse en líquidos biológicos como sangre o saliva, lo que facilita su implementación en el entorno clínico. Lo importante a considerar es la integración de estos posibles biomarcadores electrofisiológicos, de neuroimagen y moleculares para mejorar la precisión en el diagnóstico, predecir la evolución de la enfermedad y evaluar la respuesta a intervenciones quirúrgicas o farmacológicas, optimizando el manejo integral de la epilepsia del lóbulo temporal.

Abstract

Biomarkers play a crucial role in disease diagnosis, prognosis, and management. In the case of temporal lobe epilepsy, their use has focused on electrophysiological, neuroimaging, and molecular findings, aiming to characterize the disease and personalize treatment in the future. This review will provide information on potential biomarkers in temporal lobe epilepsy. Electroencephalographic studies have identified characteristic patterns of electrical activity, such as interictal discharges of high-frequency oscillations, interictal spikes, and slow-wave activity. Neuroimaging studies, such as magnetic resonance imaging, are instrumental in detecting structural abnormalities, including hippocampal sclerosis, a characteristic marker of temporal lobe epilepsy. As a biomarker, magnetic resonance imaging provides a noninvasive and clinically applicable approach to detect early signs of epileptogenesis and monitor disease progression. Molecular studies, such as synaptic, inflammatory, and epigenetic alterations, have acquired an increasingly relevant role in this disease. The detection of molecules is emerging as a promising tool since they can be detected in biological fluids (blood or saliva), which facilitates their application in the clinical setting. What is important to consider is the integration of these possible electrophysiological, neuroimaging, and molecular biomarkers to improve diagnostic accuracy, predict the evolution of the disease, and evaluate the response to surgical or pharmacological interventions, optimizing the comprehensive management of temporal lobe epilepsy.

Keywords: biomarker; epilepsy; electrophysiological; neuroimaging; molecular.


Palabras clave


Biomarcador; epilepsia; electrofisiológicos; neuroimagen; moleculares.

Texto completo:

PDF HTML

Referencias


Berg AT. Identification of pharmacoresistant epilepsy. Neurol Clin. 2009, 27:1003-1013.

Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010, 51:1069-1077.

Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001, 69:89-95.

Lai N, Li Z, Xu C, Wang Y, Chen Z. Diverse nature of interictal oscillations: EEG-based biomarkers in epilepsy. Neurobiol Dis. 2023, 177:105999.

Zijlmans M, Jiruska P, Zelmann R, Leijten FS, Jefferys JG, Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol. 2012, 71:169-178.

Bragin A, Mody I, Wilson CL, Engel J Jr. Local generation of fast ripples in epileptic brain. J Neurosci. 2002a, 22:2012-2021.

Staba RJ, Frighetto L, Behnke EJ, Mathern GW, Fields T, Bragin A, Ogren J, Fried I, Wilson CL, Engel J Jr. Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia. 2007, 48:2130-2138.

Bragin A, Wilson CL, Almajano J, Mody I, Engel J Jr. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia. 2004, 45:1017-1023.

Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JG. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010, 133:1380-1390.

Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, Engel J Jr. Interictal high-frequency oscillations (80-500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol. 2002b, 52:407-415.

Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr. Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002, 88:1743-1752.

de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol. 2001, 63:541-567.

Chauvière L, Doublet T, Ghestem A, Siyoucef SS, Wendling F, Huys R, Jirsa V, Bartolomei F, Bernard C. Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann Neurol. 2012, 71:805-814.

Keller CJ, Truccolo W, Gale JT, Eskandar E, Thesen T, Carlson C, Devinsky O, Kuzniecky R, Doyle WK, Madsen JR, Schomer DL, Mehta AD, Brown EN, Hochberg LR, Ulbert I, Halgren E, Cash SS. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. Brain. 2010, 133:1668-1681.

de Goede AA, van Putten MJAM. Infraslow activity as a potential modulator of corticomotor excitability. J Neurophysiol. 2019, 122:325-335.

Boly M, Jones B, Findlay G, Plumley E, Mensen A, Hermann B, Tononi G, Maganti R. Altered sleep homeostasis correlates with cognitive impairment in patients with focal epilepsy. Brain. 2017, 140:1026-1040.

Stovall T, Hunt B, Glynn S, Stacey WC, Gliske SV. Interictal high frequency background activity as a biomarker of epileptogenic tissue. Brain Commun. 2021, 3:fcab188.

Liou JY, Baird-Daniel E, Zhao M, Daniel A, Schevon CA, Ma H, Schwartz TH. Burst suppression uncovers rapid widespread alterations in network excitability caused by an acute seizure focus. Brain. 2019, 142:3045-3058.

Kim DW, Kim HK, Lee SK, Chu K, Chung CK. Extent of neocortical resection and surgical outcome of epilepsy: intracranial EEG analysis. Epilepsia. 2010, 51:1010-1017.

Vaughan DN, Rayner G, Tailby C, Jackson GD. MRI-negative temporal lobe epilepsy: A network disorder of neocortical connectivity. Neurology. 2016, 87:1934-1942.

Choy M, Dubé CM, Patterson K, Barnes SR, Maras P, Blood AB, Hasso AN, Obenaus A, Baram TZ. A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci. 2014, 34:8672-8684.

Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, Senatorov VV Jr, Swissa E, Rosenbach D, Elazary N, Milikovsky DZ, Milk N, Kassirer M, Rosman Y, Serlin Y, Eisenkraft A, Chassidim Y, Parmet Y, Kaufer D, Friedman A. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017, 140:1692-1705.

Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016, 15:843-856.

Labate A, Cherubini A, Tripepi G, Mumoli L, Ferlazzo E, Aguglia U, Quattrone A, Gambardella A. White matter abnormalities differentiate severe from benign temporal lobe epilepsy. Epilepsia. 2015, 56:1109-1116.

Liu HH, Wang J, Chen XM, Li JP, Ye W, Zheng J. Reduced local diffusion homogeneity as a biomarker for temporal lobe epilepsy. Medicine (Baltimore). 2016, 95:e4032.

Fukata Y, Fukata M. Epilepsy and synaptic proteins. Curr Opin Neurobiol. 2017, 45:1-8.

Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011, 7:31-40.

Friedman LK, Pellegrini-Giampietro DE, Sperber EF, Bennett MV, Moshé SL, Zukin RS. Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J Neurosci. 1994, 14:2697-2707.

Sun C, Mtchedlishvili Z, Erisir A, Kapur J. Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the alpha4 subunit of GABA(A) receptors in an animal model of epilepsy. J Neurosci. 2007, 27:12641-12650.

Needs HI, Henley BS, Cavallo D, Gurung S, Modebadze T, Woodhall G, Henley JM. Changes in excitatory and inhibitory receptor expression and network activity during induction and establishment of epilepsy in the rat Reduced Intensity Status Epilepticus (RISE) model. Neuropharmacology. 2019, 158:107728.

Egbenya DL, Hussain S, Lai YC, Xia J, Anderson AE, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci. 2018, 92:93-103.

Smolders I, Bortolotto ZA, Clarke VR, Warre R, Khan GM, O'Neill MJ, Ornstein PL, Bleakman D, Ogden A, Weiss B, Stables JP, Ho KH, Ebinger G, Collingridge GL, Lodge D, Michotte Y. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci. 2002, 5:796-804.

Beesley S, Sullenberger T, Lee C, Kumar SS. GluN3 subunit expression correlates with increased vulnerability of hippocampus and entorhinal cortex to neurodegeneration in a model of temporal lobe epilepsy. J Neurophysiol. 2022,127:1496-1510.

Beesley S, Sullenberger T, Kumar SS. The GluN3 subunit regulates ion selectivity within native N-methyl-d-aspartate receptors. IBRO Rep. 2020, 9:147-156.

Tsunashima K, Schwarzer C, Kirchmair E, Sieghart W, Sperk G. GABA(A) receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience. 1997, 80:1019-1032.

Grabenstatter HL, Cogswell M, Cruz Del Angel Y, Carlsen J, Gonzalez MI, Raol YH, Russek SJ, Brooks-Kayal AR. Effect of spontaneous seizures on GABAA receptor α4 subunit expression in an animal model of temporal lobe epilepsy. Epilepsia. 2014, 55:1826-1833.

Jankowsky JL, Patterson PH. The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol. 2001, 63:125-149.

Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci. 1999, 19:5054-5065.

De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000, 12:2623-2633.

Oprica M, Eriksson C, Schultzberg M. Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med. 2003, 7:127-140.

Panegyres PK, Hughes J. The neuroprotective effects of the recombinant interleukin-1 receptor antagonist rhIL-1ra after excitotoxic stimulation with kainic acid and its relationship to the amyloid precursor protein gene. J Neurol Sci. 1998, 154:123-132.

Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002, 43:30-35.

Holtman L, van Vliet EA, Aronica E, Wouters D, Wadman WJ, Gorter JA. Blood plasma inflammation markers during epileptogenesis in post-status epilepticus rat model for temporal lobe epilepsy. Epilepsia. 2013, 54:589-595.

Liu J, Liu Z, Liu G, Gao K, Zhou H, Zhao Y, Wang H, Zhang L, Liu S. Spinal cord injury and its underlying mechanism in rats with temporal lobe epilepsy. Exp Ther Med. 2020, 19:2103-2112.

Vezzani A, Friedman A. Brain inflammation as a biomarker in epilepsy. Biomark Med. 2011, 5:607-614.

Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci. 2005, 25:6734-6744.

Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006, 440:1054-1059.

Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol. 2012, 33:116-125.

Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005, 46:1724-1743.

Zhang L, Guo Y, Hu H, Wang J, Liu Z, Gao F. FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy. Int J Med Sci. 2015, 12:288-294.

Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001, 4:702-710.

Mazzone GL, Nistri A. S100β as an early biomarker of excitotoxic damage in spinal cord organotypic cultures. J Neurochem. 2014, 130:598-604.

Bulduk EB, Kurt G, Barun S, Aydemir O, Kiziltas M, Oktem M, Turhan T, Atilla P, Muftuoglu S. The Effects of Minocycline on the Hippocampus in Lithium- Pilocarpine Induced Status Epilepticus in Rat: Relations with Microglial/Astrocytic Activation and Serum S100B Level. Turk Neurosurg. 2019, 29:95-105.

Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS. Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a 'two-hit' seizure model. Brain Res. 2009, 12

Vizuete AFK, Hennemann MM, Gonçalves CA, de Oliveira DL. Phase-Dependent Astroglial Alterations in Li-Pilocarpine-Induced Status Epilepticus in Young Rats. Neurochem Res. 2017, 42:2730-2742. 82:162-172.

Thippeswamy T, Alapirtti T, Peltola J, Brodie MJ, Park BK, Marson AG, Antoine DJ, Vezzani A, Pirmohamed M. Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. J Clin Invest. 2017, 127:2118-2132.

Wang J, Yu JT, Tan L, Tian Y, Ma J, Tan CC, Wang HF, Liu Y, Tan MS, Jiang T, Tan L. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep. 2015, 5:9522.

Raoof R, Bauer S, El Naggar H, Connolly NMC, Brennan GP, Brindley E, Hill T, McArdle H, Spain E, Forster RJ, Prehn JHM, Hamer H, Delanty N, Rosenow F, Mooney C, Henshall DC. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine. 2018, 38:127-141.

Rukov JL, Shomron N. MicroRNA pharmacogenomics: post-transcriptional regulation of drug response. Trends Mol Med. 2011, 17:412-423.

Kretschmann A, Danis B, Andonovic L, Abnaof K, van Rikxoort M, Siegel F, Mazzuferi M, Godard P, Hanon E, Fröhlich H, Kaminski RM, Foerch P, Pfeifer A. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci. 2015, 55:466-479.

De Benedittis S, Fortunato F, Cava C, Gallivanone F, Iaccino E, Caligiuri ME, Castiglioni I, Bertoli G, Manna I, Labate A, Gambardella A. Circulating microRNA: The Potential Novel Diagnostic Biomarkers to Predict Drug Resistance in Temporal Lobe Epilepsy, a Pilot Study. Int J Mol Sci. 2021, 22:702.




DOI: https://doi.org/10.25009/eb.v16i40.2639

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.