Expresión del receptor a prolactina en el ganglio pélvico mayor en ratas macho

Fabiola Pérez-Soto, Miguel A. Morales, Gonzalo E. Aranda-Abreu, Jorge Manzo, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María R. Toledo-Cárdenas, Jorge Suárez-Medellín, María E. Hernández-Aguilar

Resumen


El Ganglio Pélvico Mayor (GPM) forma parte del sistema nervioso periférico, inerva a diversos órganos del área pélvica incluyendo la próstata y se ha mostrado que contiene receptores a hormonas esteroides y a prolactina (PRL). En trabajos anteriores se mostró que ni la ejecución de la conducta sexual ni la denervación preganglionar cambian la expresión del receptor a PRL (RPRL) en GPM, aunque en condiciones de hiperprolactinemia altera su morfología e histología. La PRL ejerce sus funciones mediante su receptor del cual se han reportado al menos tres isoformas que difieren en su dominio intracelular, conocidas como larga, intermedia y corta; sin embargo, en el GPM no se ha evidenciado si existen isoformas para este receptor. El objetivo de este trabajo fue determinar la localización del RPRL en el GPM y la expresión de las diferentes isoformas. Para ello, se extrajo el GPM de ratas macho adultas y se analizó el RPRL mediante inmunodetección en fase sólida e inmunohistoquímica. Los resultados mostraron que, mediante inmunohistoquímica, el RPRL está presente en la membrana de las neuronas del GPM. Mientras que la inmunodetección en fase sólida permitió evidenciar una banda con movilidad relativa de 75 kDa y otra similar a 100 kDa. Esto sugiere la existencia de dos isoformas en el GPM que probablemente correspondan a las isoformas reportadas corta y larga. Concluimos que las neuronas del GPM expresan el RPRL y que los efectos de PRL son mediados posiblemente por estas dos isoformas.

Abstract

The Major Pelvic Ganglion (MPG) is part of the peripheral nervous system, innervates several organs of the pelvic area including the prostate, and it has been shown to contain receptors for steroid hormones and prolactin (PRL). In previous works, it was shown that neither the execution of sexual behavior nor preganglionic denervation changes the expression of the prolactin receptor (RPRL) in the MPG, but in conditions of hyperprolactinemia, its morphology and histology are modified. Prolactin exerts its functions through its receptor with at least three isoforms that differ in the intracellular domain known as long, intermediate, and short. However, in the MPG it has not been shown whether isoforms exist for this receptor. This work aimed to determine the RPRL location in the MPG tissue and the existence of the different isoforms. The MPG was extracted from adult male rats, and the prolactin receptor was analyzed using solid-phase immunodetection and immunohistochemistry. Immunohistochemistry results indicated that the prolactin receptor is expressed in the MPG. While solid-phase immunodetection revealed a band with relative mobility of 75 kDa and another similar to 100 KDa. This suggests the existence of the short and long isoforms. We conclude that MPG neurons express the prolactin receptor and that its effects probably are mediated by these two isoforms.

Keywords: prolactin; prolactin receptor; major pelvic ganglion; peripheral nervous system.


Palabras clave


Prolactina; receptor a prolactina; ganglio pélvico mayor; sistema nervioso periférico.

Texto completo:

PDF

Referencias


Shimizu T, Egan-Konopka LM, Ohta Y, Dun NJ. Localization of Postganglionic neurons to the male genital organ in the mayor pelvic ganglion of the rat. Took J Exp Med 1982 136(3): 351-52.

Keast JR, Booth AM, De Groat WC. Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder, colon or penis. Cell Tissue Res 1989 256(1): 105-12.

Kepper M, Keast JR. Immunohistochemical properties and spinal connections of pelvic autonomic neurons that innervate the rat prostate gland. Cell Tissue Res 1995 281(3): 533-42.

Rauchenwald M, Steers WD, Desjardins C. Efferent innervation of the rat testis. Biol Reprod 1995 52(5): 1136-43.

Landa-García, JN, Palacios-Arellano, MdlP, Morales MA, Aranda-Abreu GE, Rojas-Durán F, Herrera-Covarrubias D, Toledo-Cárdenas MR, Suárez-Medellín JM, Coria-Avila GA, Manzo J, Hernández-Aguilar ME. The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals 2024 14(7): 1-12.

Keast JR, Saunders RJ. Testosterone has potent, selective effects on the morphology of pelvic autonomic neurons which control the bladder, lower bowel and internal reproductive organs of the male rat. Neuroscience 1998 85(2): 543-56.

Purves-Tyson TD, Arshi MS, Handelsman DJ, Cheng Y, Keast JR. Androgen and estrogen receptor–mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia. Neuroscience 2007 148(1): 92-104.

Mateos-Moreno A, Sánchez-Zavaleta V, Aranda-Abreu GE, Herrera-Covarrubias D, Rojas-Durán F, Manzo J, Suárez-Medellín J, Toledo MR, Hernández-Aguilar ME. Efecto de la denervación preganglionar sobre la expresión de receptores adrenérgicos, muscarínicos, de andrógenos y de prolactina en el ganglio pélvico principal de ratas macho con comportamiento sexual a largo plazo. eNeurobiología 2021 12(29): 1-8.

Grattan DR, Szawka RE. Kisspeptin and prolactin. Semin Reprod Med 2019 37(2): 93-104.

Imegawa W, Yang J, Guzman R, Nandi S. Control of mammary gland growth and development. En: Neill JD (ed) Knobil and Neill’s Physiology of Reproduction (3rd). Raven Press 1994. 1033-63.

Cabrera-Reyes EA, Limón-Morales O, Rivero-Segura NA, Camacho-Arroyo I, Cerbón M. Prolactin function and putative expression in the brain. Endocrine 2017 57(2): 199-213.

Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways, and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998 19(3): 225-68.

Hair WM, Gubbay O, Jabbour HN, Lincoln GA. Prolactin receptor expression in human testis and accessory tissues: localization and function. Mol Hum Reprod. 2002 8(7): 606-11.

Poindexter AN, Buttram VC, Besch PK, Smith RG. Prolactin receptors in the ovary. Fertil Steril 1979 31(3): 273-7.

Vallcaneras SS, Delgado SM, Motta A, Telleria CM, Rastrilla AM, Casais M. Effect of prolactin acting on the coeliac ganglion via the superior ovarian nerve on ovarian function in the postpartum lactating and non-lactating rat. Gen Comp Endocrinol 2013 184:1-8.

Cardinali DP, Romeo HE, Ochan CM, Moguilevsky JA. Estrous Cycle delay and inhibition of gonadotropin and prolactin release during sympathetic nerve degeneration after superior cervical ganglionectomy of rats. Neuroendocrinol. 1989 50: 59-65.

Gejman PV, Cardinali DP. Hormone effects on muscarinic cholinergic binding in bovine and rat sympathetic superior cervical ganglia. Life Sci 1983 32: 965-72

Patil M, Belugin S, Mecklenburg J, Wangzhou A, Paige C, Barba-Escobedo PA, Boyd JT, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin Regulates Pain Responses via a Female-Selective Nociceptor-Specific Mechanism. Science. 25(20): 449-65.

Shirota M, Banville D, Ali S, Jolicoeur C, Boutin JM, Edery M, Djiane J, Kelly PA. Expression of two forms of prolactin receptor in rat ovary and liver. Mol Endocrinol 1990 4(8): 1136-43.

NORMA Oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio.

Crowcroft PJ, Szurszewski JH. A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol 1971 219(2): 421-41.

Greenwood D, Coggeshall RE, Hulsebosch CE. Sexual dimorphism in numbers of neurons in the pelvic ganglia of adult rats. Brain Res 1985 340: 160-2.

Melvin JE, Hamill RW. Androgen-Specific Critical Periods for the Organization of the Major Pelvic Ganglion. The Journal of Neuroscience. 1989 9(2): 738-42.

Janig W, McLachlan EM. Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev 1987 67(4): 1332-1404.

Sánchez Zavaleta V. Efecto de la conducta sexual y la denervación preganglionar sobre las características histológicas de la próstata y del ganglio pélvico mayor en la rata [tesis doctoral]. Xalapa: Universidad Veracruzana; 2021.

Lösel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 2003 4: 46-55.

Jabbour HN, Kelly PA. Prolactin receptor subtypes: a possible mode of tissue specific regulation of prolactin function. Reviews of Reproduction 1997 2: 14–8.

Okamura H, Raguet S, Bell A, Gagnon J, Kelly PA. Purification and protein sequence analysis of rat liver prolactin receptor. J Biol Chem 1989 264(10): 5904-11.

Rojas-Durán F, Pascual-Mathey LI, Serrano K, Aranda-Abreu GE, Manzo J, Soto-Cid AH, Hernández ME. Correlation of prolactin levels and PRL-receptor expression with Stat and Mapk cell signaling in the prostate of long-term sexually active rats. Physiol Behav 2015 138: 188-92.

Bogorad RL, Ostroukhova TY, Orlova AN, Rubtsov PM, Smirnova OV. Long isoform of prolactin receptor predominates in rat intrahepatic bile ducts and further increases under obstructive cholestasis. J Endocrinol 2006 188(3): 345-54.




DOI: https://doi.org/10.25009/eb.v16i41.2642

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una revista de publicación continua editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.