Hormonas y neurociencias

Oscar González-Flores, Marcos García-Juárez, Raymundo Domínguez-Ordoñez

Resumen


En esta revisión se describen algunos aspectos para comprender los efectos de las hormonas y su efecto en el funcionamiento cerebral, utilizando para ello el estudio de la conducta sexual femenina (CSF). Las hormonas esteroides, como el estradiol (E2) y la progesterona (P), juegan un papel importante en el desarrollo y la expresión de dicha conducta. Por ejemplo, se conoce que el E2 prepara al sustrato neural involucrado en la regulación de la CSF (área preóptica; APO o el hipotálamo; HT, etc.) mientras que la P es quien dispara la expresión de dicha conducta. Además, se ha planteado que compuestos con diferentes estructuras químicas como: péptidos (hormona liberadora de gonadotropinas; GnRH, leptina, apelina-13), aminas biogénicas (adrenalina), prostraglandina E2 (PGE2), segundos mensajeros (adenosín monofosfato cíclico; AMPc, guanosín monofosfato cíclico; GMPc, etc.), pueden sustituir al efecto inductor de la P sobre la expresión de la CSF.

Además, se describen algunos estudios realizados desde un punto de vista hormonal, así como celular en roedores, los cuales han contribuido al entendimiento de la fisiología reproductiva. También se describen algunos de los mecanismos intracelulares involucrados en la regulación de la expresión de dicho comportamiento como: a) la fosforilación de proteínas, b) los efectos de leptina y apelina-13, y su posible comunicación cruzada con hormonas esteroides. Finalmente, c) describiremos cómo los astrocitos, al liberar neurotransmisores en respuesta a diversas hormonas, podrían modular a las neuronas del HT involucradas en la liberación de la GnRH, misma que se encuentra en sincronía con la expresión de la CSF. 

Abstract

This review describes some aspects to understand the effects of hormones and their impact on brain function, using the study of female sexual behavior (FSB) as a framework. Steroid hormones, such as estradiol (E2) and progesterone (P), play an important role in the development and expression of this behavior. For example, E2 is known to prepare the neural substrate involved in regulating FSB (preoptic area; POA or ventromedial hypothalamus; VMH, etc.), while P triggers the expression of this behavior. Furthermore, it has been suggested that compounds with different chemical structures, such as peptides (gonadotropin-releasing hormone; GnRH, leptin, apelin), biogenic amines (adrenaline), prostaglandin E2 (PGE2), and second messengers (cyclic adenosine monophosphate; cAMP, cyclic guanosine monophosphate; cGMP, etc.), could substitute for the inductive effect of P on the expression of FSB.

Additionally, some studies conducted from a hormonal and cellular perspective in rodents are described, which have contributed to the understanding of reproductive physiology. The review also outlines some of the intracellular mechanisms involved in regulating the expression of this behavior, such as a) protein phosphorylation, b) the effects of leptin and apelin-13, and their possible cross-communication with steroid hormones. Finally, c) we will describe how astrocytes, by releasing neurotransmitters in response to various hormones, could modulate the VMH neurons involved in the release of GnRH, which is synchronized with the expression of FSB.

 Keywords: Lordosis; hormones; estrogen receptor (ER); progesterone receptor (PR).


Palabras clave


Lordosis; hormonas; receptor a estrógenos (RE); receptor a progesterona (RP).

Texto completo:

PDF HTML

Referencias


Starling EH. The Croonian Lectures on the Chemical Correlation of the Functions of the Body. Lancet 1905 166(4275): 339-341. https://doi.org/10.1016/S0140

Norman AW, Litwack G. General Considera-tions of Hormones. In: Norman AW, Lit-wack G, editors. Hormones. New York: Ac-ademic Press 1987 p. 1-48.

Pfaus JG, Jones SL, Flanagan-Cato LM, Blaustein JD. Female sexual behavior. In: Plant TM, Zeleznik AJ, editors. Knobil and Neill’s Physiology of Reproduction. Two-volume Set. USA: Elsevier 2015 p. 2287–2370. https://doi.org/10.1016/B978-0-12-397175-3.00050-8

Beach FA. Sexual attractivity, proceptivity, and receptivity in female mammals. Horm Behav 1976 7(1): 105-138. https://doi.org/10.1016/0018-506X(76)90008-8

Pfaus JG, Kippin TE, Centeno S. Condition-ing and sexual behavior: a review. Horm Behav 2001 40(2): 291-321. https://doi.org/10.1006/hbeh.2001.1686

Rodrı́guez-Gironés MA, Enquist M. The evolution of female sexuality. Anim Behav 2001 61(4): 695-704. https://doi.org/10.1006/anbe.2000.1630

Blaustein JD, Mani SK. Feminine Sexual Behavior from Neuroendocrine and Mo-lecular Neurobiological Perspectives In: Lajtha A, Blaustein JD, editors. Handbook of Neurochemistry and Molecular Neuro-biology. New York: Springer 2007 p.95-149. https://doi.org/10.1007/978-0-387-30405-2_3

Beyer C, González-Flores O, García-Juárez M, González-Mariscal G. Non-ligand activa-tion of estrous behavior in rodents: cross-talk at the progesterone receptor. Scand J Psychol 2003 44(3): 221-229. https://doi.org/10.1111/1467-9450.00339

Beyer C, Canchola E, Cruz ML, Larsson K. A model for explaining estrogen progester-one interactions in induction of lordosis behavior. In: Cumming IA, Funder JW, Mendelsohn FAD, editors. Endocrinology. Canberra: Australian Academic of Sciences 1980 p. 615-618.

Lodish H, Berk A, Kaiser C, Krieger M, Bretscher A, Ploegh H, Martin K, Yaffe M, Amon A. Molecular Cell Biology. 9th ed: W H Freeman 2021.

Fernández-Guasti A, Rodríguez-Manzo G, Beyer C. Effect of guanine derivatives on lordosis behavior in estrogen primed rats. Physiol Behav 1983 31(5): 89-92.

Mobbs CV, Rothfeld JM, Saluja R, Pfaff DW. Phorbol esters and forskolin infused into midbrain central gray facilitate lordosis. Pharmacol Biochem Behav 1989 34(3): 665-667. https://doi.org/10.1016/0091-3057(89)90572-8

Cai J, Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neu-rons. Front Neural Circuits 2022 16: 867053. https://doi.org/10.3389/fncir.2022.867053

Guerra-Araiza C, Villamar-Cruz O, Gonzalez-Arenas A, Chavira R, Camacho-Arroyo I. Changes in progesterone receptor isoforms content in the rat brain during the oestrous cycle and after oestradiol and progesterone treatments. J Neuroen-docrinol 2003 15(10): 984-990. https://doi.org/10.1046/j.1365-2826.2003.01088.x

Korf HW, Moller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. Handb Clin Neurol 2021 180: 227-251. https://doi.org/10.1016/B978-0-12-820107-7.00015-X

Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neu-rosci 2017 11: 94. https://doi.org/10.3389/fnsys.2017.00094

Kim KW, Donato Jr., Berglund ED, Choi YH, Kohno D, Elias CF, DePinho, RA, Elmquist JK. FOXO1 in the ventromedial hypothala-mus regulates energy balance. J Clin In-vest 2012 122(7): 2578-2589. https://doi.org/10.1172/JCI62848

Jung T, Catalgol B, Grune T. The pro-teasomal system. Mol Aspects Med 2009 30(4): 191-296. https://doi.org/10.1016/j.mam.2009.04.001

Parsons B, McGinnis MY, McEwen BS. Sequential inhibition of progesterone: ef-fects on sexual receptivity and associated changes in brain cytosol progestin bind-ing in the female rat. Brain Res 1981 221(1): 149-160. https://doi.org/10.1016/0006-8993(81)91069-6

González-Flores O, Guerra-Araiza C, Cerbon M, Camacho-Arroyo I, Etgen AM. The 26S proteasome participates in the sequential inhibition of estrous behavior induced by progesterone in rats. Endocrinology 2004 145(5): 2328-2336. https://doi.org/10.1210/en.2003-1162

Camacho-Arroyo I, Villamar-Cruz O, González-Arenas A, Guerra-Araiza C. Partic-ipation of 26S proteasome in the regula-tion of progesterone receptor concentra-tions in the rat brain. Neuroendocrinolo-gy 2002 76(5): 267-271. https://doi.org/10.1159/000066623

Qiu M, Lange CA. MAP-kinases couple multiple functions of human progester-one receptors: degradation, transcription-al synergy, and nuclear association. J Steroid Biochem Molec Biology. 2003 85(2-5): 147-157. https://doi.org/10.1016/S0960-0760(03)00221-8

Brown MT, Cooper JA. Regulation, sub-strates and functions of src. Biochim Bio-phys Acta 1996 1287(2-3): 121-149. https://doi.org/10.1016/0304-419X(96)00003-0

Roskoski RJr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2005 331(1): 1-14. https://doi.org/10.1016/j.bbrc.2005.03.012

Boonyaratanakornkit V, Bi Y, Rudd M, Edwards DP. The role and mechanism of progesterone receptor activation of extra-nuclear signaling pathways in regulating gene transcription and cell cycle progres-sion. Steroids 2008 73(9-10): 922-928. https://doi.org/10.1016/j.steroids.2008.01.010

Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F. Activation of the Src/p21ras/Erk pathway by proges-terone receptor via cross-talk with estro-gen receptor. Embo J 1998 17(7): 2008-2018. https://doi.org/10.1093/emboj/17.7.2008

Domínguez-Ordóñez R, García-Juárez M, Lima-Hernández FJ, Gómora-Arrati P, Domínguez-Salazar E, Luna-Hernández A, Hoffman KL, Blaustein JD, Etgen AM, Gon-zález-Flores O. Protein kinase inhibitors infused intraventricularly or into the ven-tromedial hypothalamus block short la-tency facilitation of lordosis by oestradi-ol. J Neuroendocrinol 2019 31(12): e12809. https://doi.org/10.1111/jne.12809

García-Juárez M, Beyer C, Gómora-Arrati P, Domínguez-Ordóñez R, Lima-Hernández FJ, Eguibar, Galicia-Aguas YL, Etgen AM, Gon-zález-Flores O. Lordosis facilitation by leptin in ovariectomized, estrogen-primed rats requires simultaneous or sequential activation of several protein kinase path-ways. Pharmacol Biochem Behav 2013 1(10): 13-18. https://doi.org/10.1016/j.pbb.2013.05.014

González-Flores O, Beyer C, Gómora-Arrati P, García-Juárez M, Lima-Hernández FJ, Soto-Sánchez A, Etgen AM. A role for Src kinase in progestin facilitation of estrous behavior in estradiol-primed female rats. Horm Behav 2010 58(2): 223-229. https://doi.org/10.1016/j.yhbeh.2010.03.01 4

Lima-Hernández FJ, Beyer C, Gómora-Arrati P, García-Juárez M, Encarnación-Sánchez JL, Etgen AM, González-Flores O. Src kinase signaling mediates estrous behavior in-duced by 5β-reduced progestins, GnRH, PGE2 and vaginocervical stimulation in estrogen-primed rats. Horm Behav 2012 62: 579-584. https://doi.org/10.1016/j.yhbeh.2012.09.004

Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017 8: 30. https://doi.org/10.3389/fendo.2017.00030 ·

Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: a re-view. J Anim Sci 1998 76(5): 1405-1420. https://doi.org/10.2527/1998.7651405x

Fox AS, Olster DH. Effects of intracerebro-ventricular leptin administration on feed-ing and sexual behaviors in lean and obese female Zucker rats. Horm Behav 2000 37(4): 377-387. https://doi.org/10.1006/hbeh.2000.1580

Wade GN, Lempicki RL, Panicker AK, Frisbee RM, Blaustein JD. Leptin facilitates and inhibits sexual behavior in female hamsters. Am J Physiol Regulatory Inte-grative Comp Physiol 1997 272(4 Pt 2): R1354-R1358. https://doi.org/10.1152/ajpregu.1997.272.4.R1354

García-Juárez M, Beyer C, Soto-Sánchez A, Domínguez-Ordoñez R, Gómora-Arrati P, Lima-Hernández FJ, Eguibar JR, Etgen AM, González-Flores O. Leptin facilitates lor-dosis behavior through GnRH-1 and pro-gestin receptors in estrogen-primed rats. Neuropeptides 2011 45(1): 63-67. https://doi.org/10.1016/j.npep.2010.11.001

Kurowska P, Barbe A, Rozycka M, Chmielinska J, Dupont J, Rak A. Apelin in Reproductive Physiology and Pathology of Different Species: A Critical Review. Int J Endocrinol 2018 2018:9170480. https://doi.org/10.1155/2018/9170480

García-Juárez M, Luna-Hernández A, Tapia-Hernández S, Montes-Narvaez O, Domínguez-Ordoñez R, Tecamachaltzi-Silvarán MB, Pfaus JG, González-Flores O. Apelin-13 facilitates lordosis behavior fol-lowing infusions to the ventromedial hy-pothalamus or preoptic area in ovariec-tomized, estrogen-primed rats. Neurosci Lett 2022 773: 136518. https://doi.org/10.1016/j.neulet.2022.136518

Luna-Hernández, A. García-Juárez, M. Palafox-Moreno, J. Téllez-Angulo, B. Domínguez-Ordóñez, R. Pfaus, JG. González-Flores, O. Participation of the nitric oxide pathway in lordosis induced by apelin-13 in female rats. Horm Behav 2023 156: 105449. https://doi.org/10.1016/j.yhbeh.2023.105449

Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A. Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann Med 2003 35(4): 244-255. https://doi.org/10.1080/07853890310005164

Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of as-troglia by gonadal steroid hormones un-der physiological and pathological condi-tions. Prog Neurobiol 2016 144: 5-26. https://doi.org/10.1016/j.pneurobio.2016.06.002

Smith GM, Strunz C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 2005 52(3): 209-218. https://doi.org/10.1002/glia.20236

Sinchak K, Mohr MA, Micevych PE. Hypo-thalamic Astrocyte Development and Physiology for Neuroprogesterone Induc-tion of the Luteinizing Hormone Surge. Front Endocrinol (Lausanne). 2020 11: 420. https://doi.org/10.3389/fendo.2020.00420

Micevych P, Sinchak K. The Neurosteroid Progesterone Underlies Estrogen Positive Feedback of the LH Surge. Front Endo-crinol (Lausanne) 2011 2: 90. https://doi.org/10.3389/fendo.2011.00090

Clasadonte J, Poulain P, Hanchate NK, Corfas G, Ojeda SR, Prevot V. Prostaglan-din E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc Natl Acad Sci U S A 2011 108(38): 16104-16109. https://doi.org/10.1073/pnas.1107533108

Domínguez-Ordóñez R, García-Juárez M, Tapia-Hernández S, Luna-Hernández A, Galíndo-Madrid ME, Tecamachaltzi-Silvaran MB, Hoffman KL, Pfaus JG, Gonzá-lez-Flores O. Oxytocin induces lordosis behavior in female rats through the pros-taglandin E2/GnRH signaling system. Horm Behav 2021 136: 105081. https://doi.org/10.1016/j.yhbeh.2021.105081

Prevot V, Cornea A, Mungenast A, Smiley G, Ojeda SR. Activation of erbB-1 signaling in tanycytes of the median eminence stimu-lates transforming growth factor beta1 re-lease via prostaglandin E2 production and induces cell plasticity. J Neurosci 2003 23(33): 10622-10632. https://doi.org/10.1523/JNEUROSCI.23-33-10622.2003

Ma YJ, Ojeda SR. Neuroendocrine control of female puberty: glial and neuronal in-teractions. J Investig Dermatol Symp Proc 1997 2(1): 19-22. https://doi.org/10.1038/jidsymp.1997.5

De Seranno S, d'Anglemont de Tassigny X, Estrella C, Loyens A, Kasparov S, Leroy D, Ojeda SR, Beauvillain J, Prevot V. Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence. Endocrinology 2010 151(4):1760-1772. https://doi.org/10.1210/en.2009-0870

Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2022 132: 793-817. https://doi.org/10.1016/j.neubiorev.2021.11.014

Sharif A, Baroncini M, Prevot V. Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 2013 98(1): 1-15. https://doi.org/10.1159/000351867




DOI: https://doi.org/10.25009/eb.v15i39.2634

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.