Modelos clásicos de inducción de parkinson

Fátima Castañeda-Achutiguí, Aldo Tejeda-Martínez, Alejandro Escalante-Castañeda, Hans Alam Sucres-Bernes, Eduardo Monterrubio-Ledezma, Raúl García-Lemus

Resumen


La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo y progresivo, que se caracteriza por un conjunto de alteraciones principalmente motoras como consecuencia de la pérdida de más del 70% de neuronas dopaminérgicas en la Sustancia Nigra pars compacta (SNpc), aunque la etiología exacta de esta enfermedad es aún desconocida se ha demostrado su relación con estrés oxidativo comúnmente consecuente a afecciones mitocondriales, procesos neuroinflamatorios, excitotoxicidad, factores neurotróficos y disfunciones proteosomales que concluyen con muerte celular programada o apoptosis. Estos procesos bioquímicos pueden ser reproducidos selectivamente por fármacos como α-metil-para-tirosina, anfetaminas y reserpina, algunos plaguicidas como rotenona y paraquat y toxinas como 6-hidroxidopamina y MPTP; motivo por el que se han empleado para modelar esta condición patológica, con la finalidad del estudio propio de la enfermedad o el desarrollo de técnicas y moléculas que coadyuven a la terapéutica de esta. A pesar de que se han diseñado modelos genéticos para inducir esta enfermedad, no hay referencias de alguno que pueda reproducir todos los procesos fisiopatológicos y características clínicas que en este padecimiento se presentan; por lo que algunos pueden ser más aptos para el modelaje de esta patología. Uno de los más utilizados es la toxina MPTP por su alta capacidad de traspasar barreras biológicas y la elevada similitud de los efectos que produce con los que se presentan en la EP. En esta revisión condensamos las características principales de los modelos de parkinsonismo que hoy en día se emplean, para facilitar la tarea de los investigadores de este campo.


Abstract

Parkinson's disease (PD) is a neurodegenerative and progressive disorder that is characterized by a set of motor disturbances mainly due to the loss of over 70% of dopaminergic neurons in the substantia nigra pars compacta (SNpc), although the etiology of this disease is still unknown has shown its relationship with oxidative stress commonly consequent to mitochondrial disorders, neuroinflammatory processes, excitotoxicity, neurotrophic factors and dysfunction proteosomales concluding with programmed cell death or apoptosis. These biochemical processes can be selectively reproduced by drugs such as α-methyl-para-tyrosine, amphetamine and reserpine, as some pesticides such as rotenone and paraquat, some toxins such as MPTP and 6-hydroxydopamine; reason that have been used to model this pathological condition, with the purpose of studying the disease or the development of techniques and molecules that contribute to this therapeutic. Although genetic models are designed to induce the disease, does not exist someone who can reproduce all the pathophysiological processes and clinical characteristics are presented in this condition; so some may be more suitable for modeling this disease. One of the most used is the toxin MPTP; for its high ability to pass biological barriers and the high similarity of the effects produced with those presented in the EP. In this review we condense the main features of the usually Models of Parkinsonism to facilitate the task of researches in this field

Keywords: Parkinson disease; substance nigra; pharmacological models; MPTP; genetic models; parkinsonism.



Palabras clave


Enfermedad de Parkinson; sustancia nigra; modelos farmacológicos; MPTP; modelos genéticos; parkinsonismo.

Texto completo:

PDF

Referencias


Ortiz G, Pacheco-Moisés P, Macías-Islas M, Jiménez-Gil F, Miranda-Díaz A, Flores-Alvarado L, et al. Toxicidad de plaguicidas y su asociación con la enfermedad de Parkinson. Arch Neurocien (Mex). 2011;16 (1): 33-39.

Van-der-Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, and Vermeulen R. Is Pesticide Use Related to Parkinson Disease? Some Clues to Heterogeneity in Study Results. Environ Health Persp.2012; 120(3): 340-347.

Tanner C, Kamel F, Webster-Ross G, Hoppin J, Goldman S, Korell M, et al. Rotenone, Paraquat and Parkinson's Disease. Environ Health Persp. 2011; 119(6): 866-872.

Mulcahy P, Walsh S, Paucard A, Rea K, Dowd E. Characterisation Of A Novel Model Of Parkinson’s Disease By Intra-Striatal Infusion Of The Pesticide Rotenone. Neuroscience. 2011; 181: 234–242.

Greenamyre JT,Cannon JR, Drolet R, and Pier-Giorgio M. Lessons from the rotenone model of Parkinson’s disease. Trends Pharmacol Sci. 2010; 31(4): 141–142.

Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T. Parkinsonian Rotenone Mouse Model: Reevaluation of Long-Term Administration of Rotenone in C57Bl/6 Mice. Biol Pharm Bull. 2011. 34 (1): 92-96.

Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, et al. Progression of Parkinson’s Disease Pathology Is Reproduced by Intragastric Administration of Rotenone in Mice.; Plos One. 2010; 5(1): e8762.

Zhaohui L, Tianxia L, Dejun Y, Wanli WS. Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease. Adv Behav Biol. 2013; 2(1): 18-27.

Choi WS, D. Palmiter R, Xia1 Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol. 2011; 192: 873–882.

M. Rappolda P, Cuia M, S. Chessera A, Tibbetta J, C. Grimaa J, Duanc L, et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3.P Natl Acad Sci Usa. 2011; 108 (51): 20766–20771.

Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z, et al. The role of autophagy in Parkinson's disease: rotenone-based modeling.Behavioral and Brain Functions. 2013. 9:13.

Le W, Sayana P, Jankovic J. Animal models of Parkinson's disease: a gateway to therapeutics? Neurotherapeutics. 2014; 11(1): 92-110

Cabeza-Arvelaiz Y, Schiestl RH.Transcriptome Analysis of a Rotenone Model of Parkinsonism Reveals Complex I-Tied and -Untied Toxicity Mechanisms Common to Neurodegenerative Diseases. Plos One. 2012; 7(9): e44700.

Gómez-Chavarín M, Díaz-Pérez R, Morales-Espinosa R, Fernández-Ruiz J, Roldán-Roldán G, Torner C. Efecto de la exposición al pesticida rotenona sobre el desarrollo del sistema dopaminérgico nigroestriatal en ratas. Salud Ment. 2013; 36: 1-8.

Nisticò R, Mehdawy B, Piccirilli S, Mercuri N. Paraquat- and Rotenone-Induced Models of Parkinson’s Disease. Int J of Immunopathol and Pharmacol. 2011; 24 (2): 313-22.

Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and New AnimalModels of Parkinson’s Disease. J Biomed Biotechnol. 2012; 2012:845618.

Berry C, La Vecchia C, Nicotera P. Paraquat and Parkinson’s disease. Cell Death Differ.2010; 17: 1115-1125.

Gasser PJ, Orchinik M, Raju I, Lowry CA. Distribution of organic cation transporter 3, a corticosterone-sensitive monoamine transporter, in the rat brain. J Comp Neurol. 2009; 512:529–555.

Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK. Iron and Paraquat as Synergistic Environmental Risk Factors in Sporadic Parkinson’s Disease Accelerate Age-Related Neurodegeneration.J Neurosci. 2007; 27(26): 6914-692

Zhou H, Huang C, Tong J, Xia XG. Early Exposure to Paraquat Sensitizes Dopaminergic Neurons to Subse-quent Silencing of PINK1 Gene Expression in Mice. Int J Biol Sci. 2011; 7(8):1180-1187.

María Victoria Sosti bajo la dirección de Jaime Kulisevsky Bojarski. Caracterización molecular y determinación del perfil cognitivo de modelos de parkinsonismo en rata inducidos por 6-OHDA. Tesis Adscrita al Departamento de Bioquímica y Biología Molecular de la Facultad de Medicina de la Universitat Autònoma de Barcelona. Barcelona 2013.

Inamdar A, Chaudhuri A, O’Donnell J. The Protective Effect of Minocycline in a Paraquat-Induced Parkinson’s Disease Model in Drosophila is Modified in Altered Genetic Backgrounds. Parkinson’s Disease. 2012; 2012; 2012:938528.

Matthews M,Bondi C,Torres G,Moghaddam B. Reduced presynaptic dopamine activity in adolescent dorsal striatum. Neuropsychopharmacology. 2013; 38(7):1344-51.

Price MT, Fibiger HC. Apomorphine and amphetamine stereotypy after 6-hydroxydopamine lesions of the substantia nigra.Eur J Pharmacol.1974;29:249-52.

Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE,et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron.2000;25:239-52.

Przedborski S, Tieu K. 2006. Toxic animal models. InNeurodegenerativediseases (ed. Beal MF, et al.), pp. 196–221.Cambridge University Press, Cambridge.

Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y,Emson PC, Miller GW. Reduced vesicular storageof dopamine exacerbates methamphetamine-inducedneurodegeneration and astrogliosis. J Neurochem.2008; 106:2205–2217.

Yuan J, Darvas M, Sotak B, Hatzidimitriou G,McCann UD, Palmiter RD, Ricaurte GA. Dopamine is not essential for the development of methamphetamine-induced neurotoxicity. J Neurochem. 2010; 114: 1135-1142.

Yuan J, Cord BJ, McCann UD, Callahan BT, Ricaurte GA. Effect of depleting vesicular and cytoplasmic dopamine on methylenedioxymethamphetamine neurotoxicity. J Neurochem.2002; 80: 960–969.

Carlsson A. The occurrence, distribution and physiologicalrole of catecholamines in the nervous system. Pharmacol Rev. 1959; 11: 490-493.

Carlsson A, Lindqvist M, Magnusson T. 3, 4-Dihydroxyphenylalanineand 5-hydroxytryptophan as reserpineantagonists. Nature. 1957; 180: 1200.

Tieu K. A guide to neurotoxic animal models of Parkinson's disease. Csh Perspect Med. 2011; 1(1): a009316.

Heeringa MJ,Abercrombie ED.Biochemistry of somatodendritic dopamine release in substantia nigra: an in vivo comparison with striatal dopamine release.J Neurochem.1995; 65:192–200.

Kannari K, Tanaka H, Maeda T, Tomiyama M, Suda T, Matsunaga M. Reserpine pretreatment prevents increases in extracellular striatal dopamine following L-DOPA administration in rats with nigrostriatal denervation. J Neurochem.2000; 74 (1): 263-269.

Robledo P, Feger J. Acute monoaminergic depletion in the rat potentiates the excitatory effect of the subthalamic nucleus in the substantia nigra pars reticulata but not in the pallidal complex.J Neural Transm-Gen.1991;86:115-126

Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL. Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease.Movement Disord.2002;17:S145-S149.

Gossel M, Schmidt WJ, Loscher W, Zajaczkowski W, Danysz W. Effect of coadministration of glutamate receptor antagonists and dopaminergic agonists on locomotion in monoamine-depleted rats. J Neural Transm-Park. 1995; 10: 27-39.

Utley JD, Carlsson A. Relative effects of L-DOPA and its methyl ester givenorally or intraperitoneally to reserpine-treated mice. Acta Pharmacol Tox. 1965;23:189-93.

Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, et al.Chronic Parkinsonism secondary to intravenous injection of meperidineanalogues. Psychiat Res. 1979;1:249-54.

Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism inhumans due to a product of meperidine-analog synthesis. Science. 1983;219:979-80.

Langston JW, Forno LS, Rebert CS, Irwin I. Selective nigral toxicity after systemicadministration of 1-methyl-4-phenyl-1, 2,5,6-tetrahydropyrine (MPTP)in the squirrel monkey. Brain Res. 1984;292:390-4.

Singer TP, Castagnoli N, Ramsay RR, Trevor AJ. Biochemical events inthe development of parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J Neurochem. 1987;49(1):1-8.

Cohen G. Monoamine oxidase and oxidative stress at dopaminergicsynapses. J Neur Trs. 1990;32:229-38.

Ramsay RR, Kowal AT, Johnson MK, Salach JI, Singer TP. The inhibition siteof MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. Arch Biochem Biophys. 1987;259:645-9.

Alarcón-Aguilar A, Abel SA, Königsberg-Fainstein M. Modelos neurotóxicos de la enfermedad de parkinson y disfunción mitocondrial. Reb. 2010; 29(3): 91-99.

Bové J, Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 2012; 211:51-76.

Mandavilli BS, Ali SF, Van-Houten B. DNA damage in brain mitocondria caused by aging and MPTP treatment. Brain Res. 2000;885:45-52.

Langston JW, Irwin I, DeLanney LE. The biotransformation of MPTP and disposition of MPP+: the effects of aging. Life Sci. 1987; 40:749-754.

Schmidt N, Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm. 2001;108:1263-82.

Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet. 2000;30: 171-182.

Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course andmorphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration. 1995;4:257-69.

Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, et al. JNKmediatedinduction of cyclooxygenase 2 is required for neurodegenerationin a mouse model of Parkinson’s disease. P Natl Acad Sci-Biol.2004;101:665-70.

Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the substantianigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treatedmice using terminal deoxynucleotidyl transferase labelling and acridineorange staining.Neuroscience. 1997;77:1037-48.

Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, PrzedborskiS. Alpha-synuclein up-regulation in substantia nigra dopaminergic neuronsfollowing administration of the parkinsonian toxin MPTP. J Neurochem. 2000;74:721-9.

Bezard E, Dovero S, Bioulac B, Gross C. Effects of different schedules ofMPTP administration on dopaminergic neurodegeneration in mice. ExpNeurol 1997;148:288-92.

Bezard E, Dovero S, Bioulac B, Gross CE. Kinetics of nigral degeneration ina chronic model of MPTP-treated mice. Neurosci Lett. 1997;234:47-50.

Thoenen H, Tranzer JP. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-Hydroxydopamine. N-S Arch Ex Path Ph. 1968; 261: 271-288.

Porter CC, TotaroJA, Burcin A. The relationship between radioactivity and norepinephrine concentrations in the brains and hearts of mice following administration of labelled methyldopa or 6-hydroxydopamineJ Pharmacol Exp Ther.1965; 150: 17-22.

Porter CC, Totaro JA, Stone CA. Effects of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther.1963; 140, 308-316.

Ungerstedt. U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol.1968; 5: 107-110.

Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T. Effects of amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology. 1989;99: 550–557.

Cohen G, Werner P.Free radicals, oxidative stress, and neurodegeneration. EnCalne DB (ed). Neurodegenerative diseases. Saunders, Philadelphia;1994.p. 139-162.

Simola N, Morelli M, Carta AR.The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res. 2007; 1:151-167.

Jonsson G. Chemical lesioning techniques: monoamine neurotoxins. En: Björklund A HkT, editor. Handbook of chemical neuroanatomy Methods in chemical neuroanatomy. Amsterdam: Elsevier Science Publishers B.V., 1983. p. 463-507.

Javoy F, Sotelo C, Herbet A, Agid Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res. 1976;102:201-15.

Jeon B, Jackson-Lewis SV, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration. 1995;4:131-137.

Faull RL, Laverty R. Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol. 1969;23:332-40.

Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience. 1995;67:631-47.

Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience. 1994;59:401-15.

Marti MJ, James CJ, Oo TF, Kelly WJ, Burke RE. Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J Neurosci 1997;17:2030-9.

O´Keeffe G, Barker RA, Caldwell MA. Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle. 2009; 15:2888-2894.

Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson's disease progression. Acta Neuropathol. 2008;115(4):385-98.

Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF, Kim KS. 3, 4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci. 2005;25(8):2132-7.

Haubenberger D, Reinthaler E, Mueller JC, Pirker W, Katzenschlager R, Froehlich R, Bruecke T, Daniel G, Auff E, Zimprich A. Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson's disease. Neurobiol Aging. 2001;32(2):302-7

Zhu XR, Maskri L, Herold C, Bader V, Stichel CC, Güntürkün O, Lübbert H. Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci. 2007;26(7):1902-11.

Hwang M, Lee JM, Kim Y, Geum D. Functional Role of Parkin against Oxidative Stress in Neural Cells. Endocrinol Metab. 2014;29(1):62-69.

Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Gomez Tortosa E, Del Ser T, Muñoz DG, De Yebenes JG. The New Mutation, E46K, Of Alpha-Synuclein Causes Parkinson And Lewy Body Dementia. Ann Neurol. 2004; 55(2):164-73.

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-Synuclein In Lewy Bodies. Nature. 1997;388:839-40.

Marques O, Outeiro TF. Alpha-Synuclein: From Secretion To Dysfunction And Death. Cell Death Dis. 2012;3:E350.

Nieto M, Gil-Bea FJ, Dalfo E, Cuadrado M, Cabodevilla F, Sanchez B, Et Al. Increased Sensitivity To MPTP In Human Alpha-Synuclein A30P Transgenic Mice. Neurobiol Aging. 2006; 27:848-56.

Dong Z, Ferger B, Feldon J, Bueler H. Overexpression Of Parkinson’s Disease- Associated Alpha-Synucleina53t By Recombinant Adeno-Associated Virus In Mice Does Not Increase The Vulnerability Of Dopaminergic Neurons To MPTP. J Neurobiol. 2002; 53:1-10.

Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J. Et Al., Alpha-Synuclein Locus Triplication Causes Parkinson's Disease. Science. 2003; 302(5646):841.

Giasson BI, Lee VM. Are Ubiquitination Pathways Central To Parkinson's Disease? Cell. 2003; 114:1-8.

Kirk D, Rosenblad C, Burger C, Lundberg C, Johansen Te, Mucyczka N, Et Al. Parkinson-Like Neurodegeneration Induced By Targeted Over Expression Of Α-Synuclein In The Nigrostriatal System. J Neurosci. 2002; 22: 2780-2791.

Volles MJ, Lansbury PT Jr. Zeroing In On The Pathogenic Form Of Alpha-Synuclein And Its Mechanism Of Neurotoxicity In Parkinson's Disease. Biochemistry 2003; 42: 7871-7878.

Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner Ba. Dopamine-Dependent Neurotoxicity Of α-Synuclein: A Mechanism for Selective Neurodegeneration in Parkinson’s Disease. Nat Med. 2002; 8:600-606.

Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic Stabilization of the α-Synuclein Protofibril by a Dopamine-α-Synuclein Abduct. Science. 2001; 294: 1346-1349.

Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and oxidative stress. P Natl Acad Sci Usa. 2005;102:5215-20.

Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. Embo Rep. 2004;5:213-8.




DOI: https://doi.org/10.25009/eb.v6i13.2581

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.