La excitabilidad de las células gliales

Daniel Reyes-Haro, Marcelino Montiel-Herrera

Resumen


En el siglo pasado se consideraba que los ensambles neuronales representaban el único sustrato de cognición. Las neuronas se identifican como células nerviosas excitables que tienen la habilidad de producir potenciales de acción, lo que promueve la liberación de neurotransmisores y la conectividad sináptica. Sin embargo, dado que la neuroglía es el grupo de células nerviosas dominantes y estas no producen potenciales de acción, se pensaba que no eran excitables y que su función se restringía a regular la homeostasis del cerebro. La neuroglía agrupa a la astroglía, la oligodendroglía y la microglía; todas expresan canales iónicos, transportadores y receptores a neurotransmisores, lo que les permite responder a los cambios que ocurren en el ambiente sináptico y extrasináptico. Las respuestas gliales incluyen fluctuaciones iónicas transitorias, así como la señalización intracelular de segundos mensajeros, lo que promueve la liberación de gliotransmisores y resulta en la modulación de la actividad neuronal. En conjunto, estos eventos definen lo que es la excitabilidad glial y su disfunción comienza a documentarse en distintas neuropatologías.

Palabras clave


Neuroglía; señalización de calcio; canales de potasio; epilepsia; autismo; señalización de sodio.

Texto completo:

PDF

Referencias


Verkhratsky A, Untiet V, Rose CR. Ionic signaling in astroglia beyond calcium. J Physiol. 2020; 598(9): 1655-1670. doi: 10.1113/JP277478.

Verkhratsky A, Semyanov A, Zorec R. Physiology of astroglial excitability. Function 2020; 1(2):zqaa016. doi: 10.1093/function/zqaa016

Schwiening CJ. A brief historical perspective: Hodgkin and Huxley. J Physiol. 2012; 590(11): 2571-2575. doi: 10.1113/jphysiol.2012.230458

Jeng JM. Ricardo Miledi and the calcium hypothesis of neurotransmitter release. Nat Rev Neurosci. 2002; 3(1): 71-76. https://doi.org/10.1038/nrn706

Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulse on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 1966; 29(4): 788-806. doi: 10.1152/jn.1966.29.4.788.

Rink TJ, Tsien LY, Tsien RW. Roger Yochien Tsien: creator of a rainbow of fluorescent probes that lit up biology. Nature 2016; 538 (7624): 172. doi: 10.1038/538172a

Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia. 2001; 33(1): 72-86. doi: 10.1002/1098-1136(20010101)33:1<72::AID-GLIA1007<3.0.CO;2-A

Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. Int Rev Cell Mol Biol. 2021; 362: 1-53. doi: 10.1016/bs.ircmb.2021.01.003.

Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD. What is the role of astrocyte calcium in neurophysiology? Neuron. 2008; 59(6): 932-46. doi: 10.1016/j.neuron.2008.09.004

Petravicz J, Fiacco TA, McCarthy KD. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci. 2008; 28(19): 4967-4973. doi: 10.1523/JNEUROSCI.5572-07.2008.

Stobart JL, Ferrari KD, Barrett MJP, Stobart MJ, Looser ZJ, Saab AS, Weber B. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation. Cereb Cortex. 2018; 28(1): 184-198. doi: 10.1093/cercor/bhw366.

Holtzclaw LA, Pandhit S, Bare DJ, Mignery GA, Russell JT. Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. Glia. 2002; 39(1): 69-84. doi: 10.1002/glia.10085.

Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F, Flint J, Wang SS. Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A. 2009; 106(9): 3496-501. doi: 10.1073/pnas.0809269106.

Nimmerjahn A, Mukamel EA, Schnitzer MJ. Motor behavior activates Bergmann glial networks. Neuron. 2009; 62(3): 400-412. doi: 10.1016/j.neuron.2009.03.019.

Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci. 2006; 9(6): 816-23. doi: 10.1038/nn1703.

Lines J, Martin ED, Kofuji P, Aguilar J, Araque A. Astrocytes modulate sensory-evoked neuronal network activity. Nat Comm. 2020; 11(1): 3689: doi: 10.1038/s41467-020-17536-3.

Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science. 2017; 356(6339): eaai8185. doi: 10.1126/science.aai8185.

Semyanov A, Henneberger C, Agarwal A. Making sense of astrocytic calcium signals – from acquisition to interpretation. Nat Rev Neurosci. 2020; 21(10): 551-564. doi: 10.1038/s41583-020-0361-8.

Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, Refaeli R, Horn H, Regev L, Groysman M, London M, Goshen I. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell. 2018; 174(1): 59-71.e14. doi: 10.1016/j.cell.2018.05.002.

Covelo A, Badoual A, Denizot A. Reinforcing interdisciplinary collaborations to unravel the astrocyte “calcium code”. J Mol Neurosci. 2022. doi: 10.1007/s12031-022-02006-w.

Haberlandt C, Derouiche A, Wyczynski A, Haseleu J, Pohle J, Karram K, Trotter J, Seifert G, Frotscher M, Steinhäuser C, Jabs R. Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One. 2011; 6(3): e17575. doi: 10.1371/journal.pone.0017575.

Cheli VT, Santiago González DA, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol. 2015; 265: 69-83. doi: 10.1016/j.expneurol.2014.12.012.

Kukley M, Nishiyama A, Dietrich D. The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J Neurosci. 2010; 30(24): 8320-31. doi: 10.1523/JNEUROSCI.0854-10.2010.

Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D, Dietmann S, de Faria O Jr, Agathou S, Káradóttir RT. Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age. Neuron. 2019; 101(3): 459-471.e5. doi: 10.1016/j.neuron.2018.12.020.

Cheli VT, Santiago González DA, Namgyal Lama T, Spreuer V, Handley V, Murphy GG, Paez PM. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in Oligodendrocyte Progenitor Cells Affects Postnatal Myelination in Mice. J Neurosci. 2016; 36(42): 10853-10869. doi: 10.1523/JNEUROSCI.1770-16.2016.

Santos G, Barateiro A, Gomes CM, Brites D, Fernandes A. Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment. Neuropharmacology. 2018; 129: 69-83. doi: 10.1016/j.neuropharm.2017.11.002.

Krasnow AM, Ford MC, Valdivia LE, Wilson SW, Attwell D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat Neurosci. 2018; 21(1): 24-28. doi: 10.1038/s41593-017-0031-y.

Battefeld A, Popovic MA, de Vries SI, Kole MHP. High-Frequency Microdomain Ca2+ Transients and Waves during Early Myelin Internode Remodeling. Cell Rep. 2019; 26(1): 182-191.e5. doi: 10.1016/j.celrep.2018.12.039.

Pappalardo LW, Black JA, Waxman SG. Sodium channels in astroglia and microglia. Glia. 2016; 64(10): 1628-45. doi: 10.1002/glia.22967.

De Biase LM, Nishiyama A, Bergles DE. Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci. 2010; 30(10): 3600-11. doi: 10.1523/JNEUROSCI.6000-09.2010.

Gould E, Kim JH. SCN2A contributes to oligodendroglia excitability and development in the mammalian brain. Cell Rep. 2021; 36(10): 109653. doi: 10.1016/j.celrep.2021.109653.

Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcão A, Xiao L, Li H, Häring M, Hochgerner H, Romanov RA, Gyllborg D, Muñoz Manchado A, La Manno G, Lönnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science. 2016; 352(6291): 1326-1329. doi: 10.1126/science.aaf6463.

Rose CR, Ransom BR. Intracellular sodium homeostasis in rat hippocampal astrocytes. J Physiol. 1996; 491(Pt 2): 291-305. doi: 10.1113/jphysiol.1996.sp021216.

Kirischuk S, Kettenmann H, Verkhratsky A. Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch. 2007; 454(2): 245-52. doi: 10.1007/s00424-007-0207-5.

Bennay M, Langer J, Meier SD, Kafitz KW, Rose CR. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia. 2008; 56(10): 1138-49. doi: 10.1002/glia.20685

Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 2007; 54(1): 59-72. doi: 10.1016/j.neuron.2007.03.014.

Pappalardo LW, Samad OA, Black JA, Waxman SG. Voltage-gated sodium channel Nav 1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+ /Ca2+ exchange. Glia. 2014; 62(7): 1162-75. doi: 10.1002/glia.22671.

Bergles DE, Jahr CE. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron. 1997; 19(6): 1297-308. doi: 10.1016/s0896-6273(00)80420-1

Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996; 383(6601): 634-7. doi: 10.1038/383634a0.

Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci. 1996; 16(19): 6255-64. doi: 10.1523/JNEUROSCI.16-19-06255.1996.

Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995; 15(5 Pt 2): 3952-69. doi: 10.1523/JNEUROSCI.15-05-03952.1995.

Pacholczyk T, Blakely RD, Amara SG. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991; 350(6316): 350-4. doi: 10.1038/350350a0.

Todd AC, Marx MC, Hulme SR, Bröer S, Billups B. SNAT3-mediated glutamine transport in perisynaptic astrocytes in situ is regulated by intracellular sodium. Glia. 2017; 65(6): 900-916. doi: 10.1002/glia.23133.

Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N. Contributions of the Na⁺/K⁺-ATPase, NKCC1, and Kir4.1 to hippocampal K⁺ clearance and volume responses. Glia. 2014; 62(4): 608-22. doi: 10.1002/glia.22629.

Vega C, R Sachleben L Jr, Gozal D, Gozal E. Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes. J Neurochem. 2006; 97(3): 872-83. doi: 10.1111/j.1471-4159.2006.03790.x.

Salazar K, Martínez F, Pérez-Martín M, Cifuentes M, Trigueros L, Ferrada L, Espinoza F, Saldivia N, Bertinat R, Forman K, Oviedo MJ, López-Gambero AJ, Bonansco C, Bongarzone ER, Nualart F. SVCT2 Expression and Function in Reactive Astrocytes Is a Common Event in Different Brain Pathologies. Mol Neurobiol. 2018; 55(7): 5439-5452. doi: 10.1007/s12035-017-0762-5

Golovina V, Song H, James P, Lingrel J, Blaustein M. Regulation of Ca2+ signaling by Na+ pump alpha-2 subunit expression. Ann N Y Acad Sci. 2003; 986: 509-13. doi: 10.1111/j.1749-6632.2003.tb07236.x

Illarionova NB, Brismar H, Aperia A, Gunnarson E. Role of Na, K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake. PLoS One. 2014; 9(6): e98469. doi: 10.1371/journal.pone.0098469

Gibbs ME, Ng KT. Counteractive effects of norepinephrine and amphetamine on quabain-induced amnesia. Pharmacol Biochem Behav. 1977; 6(5): 533-7. doi: 10.1016/0091-3057(77)90113-7.

Capuani C, Melone M, Tottene A, Bragina L, Crivellaro G, Santello M, Casari G, Conti F, Pietrobon D. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med. 2016; 8(8): 967-86. doi: 10.15252/emmm.201505944

Stoica A, Larsen BR, Assentoft M, Holm R, Holt LM, Vilhardt F, Vilsen B, Lykke-Hartmann K, Olsen ML, MacAulay N. The α2β2 isoform combination dominates the astrocytic Na+ /K+ -ATPase activity and is rendered nonfunctional by the α2.G301R familial hemiplegic migraine type 2-associated mutation. Glia. 2017; 65(11): 1777-1793. doi: 10.1002/glia.23194.

Müller T, Fritschy JM, Grosche J, Pratt GD, Möhler H, Kettenmann H. Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci. 1994; 14(5 Pt 1): 2503-14. doi: 10.1523/JNEUROSCI.14-05-02503.1994.

Reyes-Haro D, Miledi R, García-Colunga J. Potassium currents in primary cultured astrocytes from the rat corpus callosum. J Neurocytol. 2005; 34(6):411-20. doi: 10.1007/s11068-006-8727-z.

Montiel-Herrera M, García-Villa D, López-Cervantes G, Reyes-Haro D, Domínguez-Avila JA, González-Aguilar GA. The role of ion channels on the physiology of the neurovascular unit and the regulation of cerebral blood flow. J Cell Neurosci Oxid Stress. 2022; 13(2): 1004-1013. doi: 10.37212/jcnos.1054986

Seifert G, Hüttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhäuser C. Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci. 2009; 29(23): 7474-88. doi: 10.1523/JNEUROSCI.3790-08.2009.

Zhong S, Du Y, Kiyoshi CM, Ma B, Alford CC, Wang Q, Yang Y, Liu X, Zhou M. Electrophysiological behavior of neonatal astrocytes in hippocampal stratum radiatum. Mol Brain. 2016; 9: 34. doi: 10.1186/s13041-016-0213-7.

Götz S. Electrophysiological characterization and expression pattern of ion channels in astrocytes before and after traumatic brain injury. Dissertation, Ludwig-Maximilians-Universität München. 2019; https://edoc.ub.uni-muenchen.de/24532/1/Goetz_Stefanie.pdf

Bordey A, Sontheimer H. Ion channel expression by astrocytes in situ: comparison of different CNS regions. Glia. 2000; 30(1): 27-38. doi: 10.1002/(sici)1098-1136(200003)30:1<27::aid-glia4>3.0.co;2-.

Vautier F, Belachew S, Chittajallu R, Gallo V. Shaker-type potassium channel subunits differentially control oligodendrocyte progenitor proliferation. Glia. 2004; 48(4): 337-45. doi: 10.1002/glia.20088.

Tiwari-Woodruff S, Beltran-Parrazal L, Charles A, Keck T, Vu T, Bronstein J. K+ channel KV3.1 associates with OSP/claudin-11 and regulates oligodendrocyte development. Am J Physiol Cell Physiol. 2006; 291(4): C687-98. doi: 10.1152/ajpcell.00510.2005.

Liu H, Yang X, Yang J, Yuan Y, Wang Y, Zhang R, Xiong H, Xu Y. IL-17 Inhibits Oligodendrocyte Progenitor Cell Proliferation and Differentiation by Increasing K+ Channel Kv1.3. Front Cell Neurosci. 2021; 15: 679413. doi: 10.3389/fncel.2021.679413.

Sun W, Matthews EA, Nicolas V, Schoch S, Dietrich D. NG2 glial cells integrate synaptic input in global and dendritic calcium signals. Elife. 2016; 5: e16262. doi: 10.7554/eLife.16262.

Pyo H, Chung S, Jou I, Gwag B, Joe EH. Expression and function of outward K+ channels induced by lipopolysaccharide in microglia. Mol Cells. 1997; 7(5): 610-4.

Nguyen HM, Blomster LV, Christophersen P, Wulff H. Potassium channel expression and function in microglia: Plasticity and possible species variations. Channels (Austin). 2017b; 11(4): 305-315. doi: 10.1080/19336950.2017.1300738.

Li F, Lu J, Wu CY, Kaur C, Sivakumar V, Sun J, Li S, Ling EA. Expression of Kv1.2 in microglia and its putative roles in modulating production of proinflammatory cytokines and reactive oxygen species. J Neurochem. 2008; 106(5): 2093-105. doi: 10.1111/j.1471-4159.2008.05559.x.

Kotecha SA, Schlichter LC. A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci. 1999; 19(24): 10680-93. doi: 10.1523/JNEUROSCI.19-24-10680.1999.

Sontheimer H. Voltage-dependent ion channels in glial cells. Glia. 1994; 11(2): 156-72. doi: 10.1002/glia.440110210.

Roy ML, Sontheimer H. Beta-adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem. 1995; 64(4): 1576-84. doi: 10.1046/j.1471-4159.1995.64041576.x.

Bordey A, Sontheimer H. Postnatal development of ionic currents in rat hippocampal astrocytes in situ. J Neurophysiol. 1997; 78(1): 461-77. doi: 10.1152/jn.1997.78.1.461.

MacFarlane SN, Sontheimer H. Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci. 1997; 17(19): 7316-29. doi: 10.1523/JNEUROSCI.17-19-07316.1997.

Higashimori H, Sontheimer H. Role of Kir4.1 channels in growth control of glia. Glia. 2007; 55(16): 1668-79. doi: 10.1002/glia.20574.

Nguyen HM, Grössinger EM, Horiuchi M, Davis KW, Jin LW, Maezawa I, Wulff H. Differential Kv1.3, KCa3.1, and Kir2.1 expression in "classically" and "alternatively" activated microglia. Glia. 2017a; 65(1): 106-121. doi: 10.1002/glia.23078.

Seidel KN, Derst C, Salzmann M, Höltje M, Priller J, Markgraf R, Heinemann SH, Heilmann H, Skatchkov SN, Eaton MJ, Veh RW, Prüss H. Expression of the voltage- and Ca2+-dependent BK potassium channel subunits BKβ1 and BKβ4 in rodent astrocytes. Glia. 2011; 59(6): 893-902. doi: 10.1002/glia.21160.

Ou JW, Kumar Y, Alioua A, Sailer C, Stefani E, Toro L. Ca2+- and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: from microtubules to the plasma membrane. Glia. 2009; 57(12): 1280-95. doi: 10.1002/glia.20847

Bringmann A, Pannicke T, Weick M, Biedermann B, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A. Activation of P2Y receptors stimulates potassium and cation currents in acutely isolated human Müller (glial) cells. Glia. 2002; 37(2): 139-52. doi: 10.1002/glia.10025.

Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A. 2010; 107(8): 3811-6. doi: 10.1073/pnas.0914722107.

Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227-34.

Ferreira R, Lively S, Schlichter LC. IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia. Front Cell Neurosci. 2014; 8:183. doi: 10.3389/fncel.2014.00183

Cocozza G, Garofalo S, Capitani R, D'Alessandro G, Limatola C. Microglial Potassium Channels: From Homeostasis to Neurodegeneration. Biomolecules. 2021; 11(12): 1774. doi: 10.3390/biom11121774.

Cocozza G, di Castro MA, Carbonari L, Grimaldi A, Antonangeli F, Garofalo S, Porzia A, Madonna M, Mainiero F, Santoni A, Grassi F, Wulff H, D'Alessandro G, Limatola C. Ca2+-activated K+ channels modulate microglia affecting motor neuron survival in hSOD1G93A mice. Brain Behav Immun. 2018; 73: 584-595. doi: 10.1016/j.bbi.2018.07.002.

Seifert G, Henneberger C, Steinhäuser C. Diversity of astrocyte potassium channels: An update. Brain Res Bull. 2018 Jan; 136:26-36. doi: 10.1016/j.brainresbull.2016.12.002.

Skatchkov SN, Eaton MJ, Shuba YM, Kucheryavykh YV, Derst C, Veh RW, Wurm A, Iandiev I, Pannicke T, Bringmann A, Reichenbach A. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells. Glia. 2006; 53(3): 266-76. doi: 10.1002/glia.20280.

Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron. 2018; 97(2): 299-312.e6. doi: 10.1016/j.neuron.2017.12.002.

Izquierdo P, Shiina H, Hirunpattarasilp C, Gillis G, Attwell D. Synapse development is regulated by microglial THIK-1 K+ channels. Proc Natl Acad Sci U S A. 2021 Oct 19;118(42):e2106294118. doi: 10.1073/pnas.2106294118.

Seifert G, Carmignoto G, Steinhäuser C. Astrocyte dysfunction in epilepsy. Brain Res Rev. 2010; 63(1-2): 212-221. doi: 10.1016/j.brainresrev.2009.10.004.

Kivi A, Lehmann TN, Kovács R, Eilers A, Jauch R, Meencke HJ, von Deimling A, Heinemann U, Gabriel S. Effects of barium on stimulus-induced rises of [K+] o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci. 2000; 12(6): 2039-48. doi: 10.1046/j.1460-9568.2000.00103.x

Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger CE, Schramm J, Steinhäuser C. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci. 2000; 12(6): 2087-96. doi: 10.1046/j.1460-9568.2000.00104.x.

Heuser K, Eid T, Lauritzen F, Thoren AE, Vindedal GF, Taubøll E, Gjerstad L, Spencer DD, Ottersen OP, Nagelhus EA, de Lanerolle NC. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. J Neuropathol Exp Neurol. 2012; 71(9): 814-25. doi: 10.1097/NEN.0b013e318267b5af

Binder DK, Steinhäuser C. Astrocytes and Epilepsy. Neurochem Res. 2021; 46: 2687-2695. doi: 10.1007/s11064-021-03236-x

Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci. 2007; 27(42): 11354-65. doi: 10.1523/JNEUROSCI.0723-07.2007.

Sibille J, Dao Duc K, Holcman D, Rouach N. The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comput Biol. 2015; 11(3): e1004137. doi: 10.1371/journal.pcbi.1004137.

Fombonne E, Marcin C, Manero AC, Bruno R, Diaz C, Villalobos M, Ramsay K, Nealy B. Prevalence of Autism Spectrum Disorders in Guanajuato, Mexico: The Leon survey. J Autism Dev Disord. 2016; 46(5): 1669-85. doi: 10.1007/s10803-016-2696-6.

Laurence JA, Fatemi SH. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005; 4(3): 206–210.

Fatemi SH, Folsom TD, Reutiman TJ, Lee S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008; 62(7): 501–507. doi: 10.1002/syn.20519.

Broek JA, Guest PC, Rahmoune H, Bahn S. Proteomic analysis of post-mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism 2014; 5: 41. doi: 10.1186/2040-2392-5-41

Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 2014; 5(1): 3. doi: 10.1186/2040-2392-5-3.

Barón-Mendoza I, García O, Calvo-Ochoa E, Rebollar-García JO, Garzón-Cortés D, Haro R, González-Arenas A. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J. Neurosci Lett. 2018; 682: 32-38. doi: 10.1016/j.neulet.2018.06.004.

Bronzuoli MR, Facchinetti R, Ingrassia D, Sarvadio M, Schiavi S, Steardo L, Verkhratsky A, Trezza V, Scuderi C. Neuroglia in the autistic brain: evidence from a preclinical model. Mol Autism. 2018; 9: 66. doi: 10.1186/s13229-018-0254-0.

Soria-Ortiz MB, Reyes-Ortega P, Martínez-Torres A, Reyes-Haro D. A functional signature in the developing cerebellum: evidence from a preclinical model of autism. Front Cell Neurosci. 2021; 9:727079 doi: 10.3389/fcell.2021.727079

Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, Ananiev GE, Mok JC, Lin BR, Lu J, Chiao C, Cherney R, Li H, Zhang SC, Chang Q. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet. 2014; 23(11): 2968-80. doi: 10.1093/hmg/ddu008.

Russo FB, Freitas BC, Pignatari GC, Fernandes IR, Sebat J, Muotri AR, Beltrão-Braga PCB. Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human Induced Pluripotent Stem Cells. Biol Psychiatry. 2018; 83(7): 569-578. doi: 10.1016/j.biopsych.2017.09.021.

Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M. Regional alterations in purkinje cell density in patients with autism. PLoS One. 2014; 9(2): e81255. doi: 10.1371/journal.pone.0081255.

Varman DR, Soria-Ortíz MB, Martínez-Torres A, Reyes-Haro D. GABAρ3 expression in lobule X of the cerebellum is reduced in the valproate model of autism. Neurosci Lett. 2018; 687: 158–163. doi: 10.1016/j.neulet.2018.09.042

Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011; 70(5): 898-907. doi: 10.1016/j.neuron.2011.05.021.

Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, Marks S, Lakshmi B, Pai D, Ye K, Buja A, Krieger A, Yoon S, Troge J, Rodgers L, Iossifov I, Wigler M. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011; 70(5): 886-97. doi: 10.1016/j.neuron.2011.05.015.

Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, Chu SH, Moreau MP, Gupta AR, Thomson SA, Mason CE, Bilguvar K, Celestino-Soper PB, Choi M, Crawford EL, Davis L, Wright NR, Dhodapkar RM, DiCola M, DiLullo NM, Fernandez TV, Fielding-Singh V, Fishman DO, Frahm S, Garagaloyan R, Goh GS, Kammela S, Klei L, Lowe JK, Lund SC, McGrew AD, Meyer KA, Moffat WJ, Murdoch JD, O'Roak BJ, Ober GT, Pottenger RS, Raubeson MJ, Song Y, Wang Q, Yaspan BL, Yu TW, Yurkiewicz IR, Beaudet AL, Cantor RM, Curland M, Grice DE, Günel M, Lifton RP, Mane SM, Martin DM, Shaw CA, Sheldon M, Tischfield JA, Walsh CA, Morrow EM, Ledbetter DH, Fombonne E, Lord C, Martin CL, Brooks AI, Sutcliffe JS, Cook EH Jr, Geschwind D, Roeder K, Devlin B, State MW. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron. 2011; 70(5): 863-85. doi: 10.1016/j.neuron.2011.05.002.

Wang Q, Kong Y, Wu DY, Liu JH, Jie W, You QL, Huang L, Hu J, Chu HD, Gao F, Hu NY, Luo ZC, Li XW, Li SJ, Wu ZF, Li YL, Yang JM, Gao TM. Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat Commun. 2021; 12(1): 3321. doi: 10.1038/s41467-021-23843-0.

Müller J, Reyes-Haro D, Pivneva T, Nolte C, Schaette R, Lübke J, Kettenmann H. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J Gen Physiol. 2009;134(2): 115-27. doi: 10.1085/jgp.200910194.

Reyes-Haro D, Müller J, Boresch M, Pivneva T, Benedetti B, Scheller A, Nolte C, Kettenmann H. Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. J Gen Physiol. 2010; 135(6): 583-94. doi: 10.1085/jgp.200910354

Reyes-Haro D, González-González MA, Pétriz A, Rosas-Arellano A, Kettenmann H, Miledi R, Martínez-Torres A. γ-Aminobutyric acid-ρ expression in ependymal glial cells of the mouse cerebellum. J Neurosci Res. 2013; 91(4): 527-34. doi: 10.1002/jnr.23183.

Labrada-Moncada FE, Martínez-Torres A, Reyes-Haro D. GABAA Receptors are Selectively Expressed in NG2 Glia of the Cerebellar White Matter. Neuroscience. 2020; 433: 132-143. doi: 10.1016/j.neuroscience.2020.03.003.

Cheung G, Kann O, Kohsaka S, Făerber K, Kettenmann H. GABAergic activities enhance macrophage inflammatory protein-1alpha release from microglia (brain macrophages) in postnatal mouse brain. J Physiol. 2009 Feb 15;587(Pt 4):753-68. doi: 10.1113/jphysiol.2008.163923.

Ziemens D, Oschmann F, Gerkau NJ, Rose CR. Heterogeneity of Activity-Induced Sodium Transients between Astrocytes of the Mouse Hippocampus and Neocortex: Mechanisms and Consequences. J Neurosci. 2019; 39(14): 2620-2634. doi: 10.1523/JNEUROSCI.2029-18.2019.




DOI: https://doi.org/10.25009/eb.v13i32.2612

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.