Células gliales en el dolor orofacial
Resumen
El dolor, es definido como una experiencia sensitiva y emocional desagradable, asociada a una lesión tisular real o potencial. El dolor es uno de los principales motivos de consulta médica y en su forma crónica disminuye el estado anímico y la calidad de vida del paciente. Por esta razón, es indispensable para los profesionales de la salud, entender los mecanismos que lo producen. La mayoría de la información al respecto se basa en comprender cómo es que las neuronas reaccionan a los estímulos dolorosos y cómo esto se interpreta en el cerebro. Sin embargo, existen otras células del sistema nervioso que también intervienen en estos procesos. Estas son las células gliales, que incluye astrocitos, oligodendrocitos, microglía, células de Schwann y células gliales satélite. La presente revisión tiene por objetivo mostrar una recopilación de la función de las células gliales en los casos de dolor orofacial y la forma en la que se comunican con las neuronas y las células del sistema inmunitario para el desarrollo y mantenimiento del dolor.
Abstract
Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue injury. Pain is one of the main reasons for medical consultation and in its chronic form it decreases the patient's mood and quality of life. For this reason, health professionals need to understand the mechanisms that produce it. Most of the information in this regard is based on understanding how neurons react to painful stimuli and how this is interpreted in the brain, however, other brain cells are also involved in these processes. These are the glial cells, which include astrocytes, oligodendrocytes, microglia, Schwann cells, and glial satellite cells. This review aims to provide a summary of the role of glial cells in cases of orofacial pain and how they communicate with neurons and cells of the immune system for the development and maintenance of pain.
Keywords: orofacial pain; astrocytes; microglia; glial satellite cells; Schwann cells; neuropathic pain.
Palabras clave
Texto completo:
PDFReferencias
Finnerup NB, Kuner R, Jensen TS. Neuropathic Pain: From Mechanisms to Treatment. Physiol Rev. 2021;101(1):259-301.
Riddoch G. THE CLINICAL FEATURES OF CENTRAL PAIN. The Lancet. 1938;231(5985):1093-1098.
Deuis JR, Dvorakova LS, Vetter I. Methods Used to Evaluate Pain Behaviors in Rodents. Front Mol Neurosci. 2017;10.
Benoliel R, Birman N, Eliav E, Sharav Y. The International Classification of Headache Disorders: Accurate diagnosis of orofacial pain? Cephalalgia. 2008;28(7):752-762.
International Classification of Orofacial Pain, 1st edition (ICOP). Cephalalgia. 2020;40(2):129-221.
Pigg M, Nixdorf DR, Law AS, Renton T, Sharav Y, Hansen LB, List T. New International Classification of Orofacial Pain: What Is in It For Endodontists? J Endod. 2021;47(3):345-357.
Horst O v., Cunha-Cruz J, Zhou L, Manning W, Mancl L, DeRouen TA. Prevalence of pain in the orofacial regions in patients visiting general dentists in the Northwest Practice-based REsearch Collaborative in Evidence-based DENTistry research network. The Journal of the American Dental Association. 2015;146(10):721-728.e3.
Guzmán LMD, FACH, & SJLC. Prevalencia de dolor craneofacial en pacientes que buscan atención dental. Revista ADM. 2008;65(6).
Hossain M, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region. Int J Mol Sci. 2017;18(10):2051.
Migueláñez Medrán B del C, Goicoechea García C, López Sánchez AF, Martínez García MÁ. Dolor orofacial en la clínica odontológica. Revista de la Sociedad Española del Dolor. 2019;26.
Ye Y, Salvo E, Romero-Reyes M, Akerman S, Shimizu E, Kobayashi Y, Michot B, Gibbs J. Glia and orofacial pain: Progress and future directions. Int J Mol Sci. 2021;22(10).
Rotpenpian N, Yakkaphan P. Review of Literatures: Physiology of Orofacial Pain in Dentistry. eNeuro. 2021;8(2).
Ananthan S, Benoliel R. Chronic orofacial pain. J Neural Transm. 2020;127(4):575-588.
Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23-36.
Salazar García H, Jara Oseguera A, Rosenbaum Emir T. El canal TRPV1 como diana para tratar el dolor. Rev Neurol. 2009;48(07):357.
Satheesh NJ, Uehara Y, Fedotova J, Pohanka M, Büsselberg D, Kruzliak P. TRPV currents and their role in the nociception and neuroplasticity. Neuropeptides. 2016;57:1-8.
Purves D, Augustine G, Fitzpatrick D, Hall W. Neurociencias Panamericana. Published online 2008.
Lyon KA, Allen NJ. From Synapses to Circuits, Astrocytes Regulate Behavior. Front Neural Circuits. 2022;15.
Hansen D v., Hanson JE, Sheng M. Microglia in Alzheimer’s disease. Journal of Cell Biology. 2018;217(2):459-472.
Qian X, Zhang S, Duan L, Yang F, Zhang K, Yan F, Ge S. Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2021;79(4):1785-1800.
Ji RR, Berta T, Nedergaard M. Glia and pain: Is chronic pain a gliopathy? Pain. 2013;154(Supplement 1):S10-S28.
Costa FAL, Moreira Neto FL. Células gliales satélite de ganglios sensoriales: su papel en el dolor. Brazilian Journal of Anesthesiology (Edicion en Espanol). 2015;65(1):73-81.
Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, Ji RR. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics. 2020;17(3):846-860.
Deuis JR, Dvorakova LS, Vetter I. Methods Used to Evaluate Pain Behaviors in Rodents. Front Mol Neurosci. 2017;10.
Westergard T, Rothstein JD. Astrocyte Diversity: Current Insights and Future Directions. Neurochem Res. 2020;45(6):1298-1305.
Iglesias BG, Gallardo L, Martín A, Prieto J. Bases de La Fisiología 2a Ed.; 2007.
Haines D, Faaa P, Mihailoff G. PRINCIPIOS DE NEUROCIENCIA: aplicaciones básicas y clínicas. Published online 2019. Accessed April 6, 2020.
Allen NJ, Barres BA. Neuroscience: Glia - more than just brain glue. Nature. 2009;457(7230):675-677.
Ji RR, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci. 2019;20(11):667-685.
Lee CS, Ramsey AA, de Brito-Gariepy H, Michot B, Podborits E, Melnyk J, Gibbs Gibbs JL. Molecular, cellular, and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain. 2017;13:174480691771517.
Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K. Glial-Cytokine-Neuronal Interactions Underlying the Mechanisms of Persistent Pain. Journal of Neuroscience. 2007;27(22):6006-6018.
Xie YF, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun. 2007;21(5):634-641.
Maulik M, Vasan L, Bose A, Dutta Chowdhury S, Sengupta N, das Sarma J. Amyloid-β regulates gap junction protein connexin 43 trafficking in cultured primary astrocytes. Journal of Biological Chemistry. 2020;295(44):15097-15111.
Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, Nedergaard M. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia. 2012;60(11):1660-1670.
Durham P, Garrett F. Neurological Mechanisms of Migraine: Potential of the Gap-Junction Modulator Tonabersat in Prevention of Migraine. Cephalalgia. 2009;29(2_suppl):1-6.
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. In: ; 2020:29-67.
Scemes E, Suadicani SO, Dahl G, Spray DC. Connexin and pannexin mediated cell–cell communication. Neuron Glia Biol. 2007;3(3):199-208.
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal. 2021;17(4):549-561.
Hanstein R, Hanani M, Scemes E, Spray DC. Glial pannexin1 contributes to tactile hypersensitivity in a mouse model of orofacial pain. Sci Rep. 2016;6(1):38266.
Adebiyi MG, Manalo J, Kellems RE, Xia Y. Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett. 2019;712:134483.
Howarth C. The contribution of astrocytes to the regulation of cerebral blood flow. Front Neurosci. 2014;8.
Tsuboi Y, Iwata K, Dostrovsky JO, Chiang CY, Sessle BJ, Hu JW. Modulation of astroglial glutamine synthetase activity affects nociceptive behaviour and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis. European Journal of Neuroscience. 2011;34(2):292-302.
Suárez I, Bodega G, Fernández B. Glutamine synthetase in brain: effect of ammonia. Neurochem Int. 2002;41(2-3):123-142.
Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC. Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience. 2005;131(2):437-449.
Sakatani S, Seto-Ohshima A, Shinohara Y, Yamamoto Y, Yamamoto H, Itohara S, Hirase H. Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gmma oscillations in vivo. Journal of Neuroscience. 2008;28(43):10928-10936.
Echeverry S, Shi XQ, Zhang J. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain. 2008;135(1):37-47.
Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23-36.
Sorge RE, Mapplebeck JCS, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji RR, Zhang J, Salter MW, Mogil JS. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081-1083.
Kuchukulla M, Boison D. Are glia targets for neuropathic orofacial pain therapy? The Journal of the American Dental Association. 2021;152(9):774-779.
Luo D, Lin R, Luo L, Li Q, Chen T, Qiu R, Li Y. Glial Plasticity in the Trigeminal Root Entry Zone of a Rat Trigeminal Neuralgia Animal Model. Neurochem Res. 2019;44(8):1893-1902.
Couve E, Schmachtenberg O. Schwann cell responses and plasticity in different dental pulp scenarios. Front Cell Neurosci. 2018;12.
Abdo H, Calvo-Enrique L, Lopez JM, Song J, Zhang MD, Usoskin D, El Manira A, Adameyco I, Hjerling-Leffler J, Ernforns P. Specialized cutaneous Schwann cells initiate pain sensation. Science (1979). 2019;365(6454):695-699.
Rinwa P, Calvo-Enrique L, Zhang MD, Nyengaard JR, Karlsson P, Ernfors P. Demise of nociceptive Schwann cells causes nerve retraction and pain hyperalgesia. Pain. 2021;162(6):1816-1827.
Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L, Vacca V, Urbani A, Cecconi F, Malorni W, Pavone F. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain. 2014;155(1):93-107.
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry. 2016;6(9):e888.
DOI: https://doi.org/10.25009/eb.v13i32.2614
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.