Análisis in silico de los compuestos de Aloysia triphylla con potencial actividad ansiolítica y predicción de sus propiedades farmacocinéticas

Carlos Alberto Lobato-Tapia, Enrique Aguilar-Muñoz

Resumen


Los trastornos de ansiedad, caracterizados por una preocupación persistente, tienen una prevalencia a nivel mundial que oscila entre un 3.8 a un 25 %. Los tratamientos disponibles producen efectos adversos que, en ocasiones, limitan su continuidad en los pacientes. Una opción al uso de este tipo de tratamientos es el empleo de plantas medicinales con la capacidad de inducir estados de relajación y tranquilidad en quienes las usan, tal es el caso de Aloysia triphylla (cedrón o verbena de limón). El objetivo del presente trabajo es determinar, in silico, la actividad de los diferentes compuestos encontrados en A. triphylla y, evaluar el comportamiento farmacocinético de aquellos compuestos que resulten con mejores actividades con ayuda de la plataforma ADMET lab 2.0. Se realizó la búsqueda de los compuestos reportados en Google Scholar y Pubmed, una vez obtenido el listado, se introdujeron en la plataforma de PASS online para obtener sus actividades más probables. Se eligieron aquellas actividades relacionadas con la ansiedad y a esos compuestos se les evalúo su comportamiento farmacocinético en el servidor ADMET Lab 2.0. Los resultados muestran que, treinta y siete compuestos resultaron con posible actividad ansiolítica, de los cuales, siete resultaron con una probabilidad arriba del 90 % y con unos parámetros farmacocinéticos (estimados) adecuados para futuras administraciones en ensayos preclínicos y clínicos.

Abstract

Anxiety disorders, characterized by persistent worry, have a worldwide prevalence ranging from 3.8 to 25 %. The available treatments produce adverse effects that sometimes limit their continuity in patients. An option to the use of this type of treatment is the use of medicinal plants with the ability to induce states of relaxation and tranquility in those who use them, such is the case of Aloysia triphylla (lemon verbena). The objective of this work is to determine, in silico, the activity of the different compounds found in A. triphylla and to evaluate the pharmacokinetic behavior of those compounds that result in better activities with the help of the ADMET lab 2.0 platform. The reported compounds were searched in Google Scholar and Pubmed, once the list was obtained, they were entered in the PASS online platform to obtain their most likely activities. Those activities related to anxiety were chosen and these compounds were evaluated for their pharmacokinetic behavior in the ADMET Lab 2.0 server. The results show that thirty-seven compounds had possible anxiolytic activity, of which seven resulted with a probability above 90% and with (estimated) pharmacokinetic parameters suitable for future administrations in preclinical and clinical trials.

Keywords: Anxiety; natural products; bioactivity; GABA; pharmacokinetics.


Palabras clave


Ansiedad; productos naturales; bioactividad; GABA; farmacocinética.

Texto completo:

PDF

Referencias


Eaton WW, Bienvenu OJ, Miloyan B. Specific phobias. The Lancet Psychiatry. 2018; 5: 678–686.

American Psychiatric Association. American Psychiatric Association DSM-5. Manual Diagnóstico y Estadístico de los Trastornos Mentales DSM-5®. Editorial Médica Panamericana 2014; 362–366.

Agatonovic-Kustrin S, Kustrin E, Gegechkori V, Morton DW. Anxiolytic terpenoids and aromatherapy for anxiety and depression. In: Advances in Experimental Medicine and Biology. 2020 doi:10.1007/978-3-030-42667-5_11.

Stein MB, Sareen J. CLINICAL PRACTICE. Generalized Anxiety Disorder. N Engl J Med 2015; 373: 2059–68.

Walter HJ, Bukstein OG, Abright AR, Keable H, Ramtekkar U, Ripperger-Suhler J, Rockhill C. Clinical Practice Guideline for the Assessment and Treatment of Children and Adolescents With Anxiety Disorders. J Ame Aca Child Psy 2020 59: 1107–1124.

Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU. Anxiety disorders. Nat Rev Dis Primers 2017 3(1): 17100.

Kandola A, Vancampfort D, Herring M, Rebar A, Hallgren M, Firth J, Stubbs B. Moving to Beat Anxiety: Epidemiology and Therapeutic Issues with Physical Activity for Anxiety. Curr Psychiat Rep 2018 20: 1–9.

Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacology and Therapeutics. 2019; 204: 107402.

Sallard E, Letourneur D, Legendre P. Electrophysiology of ionotropic GABA receptors. Cellular and Molecular Life Sciences 2021 78:13 2021; 78: 5341–5370.

Wu C, Sun D. GABA receptors in brain development, function, and injury. Metabolic Brain Disease 2015; 30: 367–379.

Savage K, Firth J, Stough C, Sarris J. GABA-modulating phytomedicines for anxiety: A systematic review of preclinical and clinical evidence. Phytotherapy Research 2018; 32: 3–18.

Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatric Disease and Treatment 2015; 11: 165.

Saki K, Bahmani M, Rafieian-Kopaei M. The effect of most important medicinal plants on two importnt psychiatric disorders (anxiety and depression)-a review. Asian Pacific Journal of Tropical Medicine 2014; 7: S34–S42.

Subramanian K, Sankaramourthy D, Gunasekaran M. Toxicity Studies Related to Medicinal Plants. En: Mandal SC, Mandal V and Kenoshi T, Natural Products and Drug Discovery: An Integrated Approach 2018 491–505.

Vargas-Vizuet AL, Lobato-Tapia CA, Tobar-Reyes JR, Solano-De la Cruz MT, Ibáñez Marínez A, Romero Fernández A. Medicinal plants used in the region of Teziutlán, Puebla, Mexico. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2021; 21: 224–241.

Reimers EAL, Fernández CE, Reimers DJL, Chaloupkova P, del Valle JMZ, Milella L, Russo D. An ethnobotanical survey of medicinal plants used in Papantla, Veracruz, Mexico. Plants 2019 8(8): 246.

Campos-Saldaña RA, Solís-Vázquez OO, Velázquez-Nucamendi A, Cruz-Magdaleno LA, Cruz-Oliva DA, Vázquez-Gómez M, Rodríguez-Larramendi LA. Ethnobotanical knowledge, richness and use value of medicinal plants in the community “Monterrey”, Villa Corzo, Chiapas (México). B Latinoam Caribe Pl 2018 17(4): 350-362.

Velázquez-Vázquez G, Pérez-Armendáriz B, Ortega-Martinez LD, Nelly-Juarez Z. Conocimiento etnobotánico sobre el uso de plantas medicinales en la Sierra Negra de Puebla , México. Bol Latinoam Caribe Plant Med Aromat 2019.

Özdemir E, Alpinar K. An ethnobotanical survey of medicinal plants in western part of central Taurus Mountains: Aladaglar (Nigde - Turkey). Journal of Ethnopharmacology 2015. doi:10.1016/j.jep.2015.02.052.

Bakhshaei S. Phyto-pharmacological effect of nine medicinal plants as a traditional treatment of depression. 2017 www.iioab.org (accessed 30 May2021).

López-Villafranco ME, Aguilar-Contreras A, Aguilar-Rodríguez S, Xolalpa-Molina S. Las Verbenaceae empleadas como recurso herbolario en México: una revisión etnobotánica-médica The Verbenaceae used as an herbal resource in Mexico: an ethnobotanical- medical review. Polibotánica 2017; 0: 195–216.

Paniagua-Zambrana NY, Bussmann RW, Echeverría J, Romero C. Aloysia deserticola (Phil.) Lu-Irving & O’Leary Aloysia triphylla Royle VERBENACEAE. 2020. doi:10.1007/978-3-030-28933-1_18.

Sgarbossa J, Schmidt D, Schwerz F, Schwerz L, Prochnow D, Caron BO. Effect of season and irrigation on the chemical composition of Aloysia triphylla essential oil. Revista Ceres 2019; 66: 85–93.

Junior GB, de Abreu MS, do Santos da Rosa JG, Pinheiro CG, Heinzmann BM, Caron BO, Baldisserotto B, Gil Barcellos LJ. Lippia alba and Aloysia triphylla essential oils are anxiolytic without inducing aversiveness in fish. Aquaculture 2018 482: 49–56.

Rezig L, Saada M, Trabelsi N, Tammar S, Limam H, Bettaieb Rebey I, Smaoui A, Sghaier G, Del Re G, Ksouri R, Msaada K. Chemical composition, antioxidant and antimicrobial activities of Aloysia triphylla L. essential oils and methanolic extract. Ita J Food Sci 2019 31: 556–572.

Parodi TV, Vargas AP de C, Krewer C, Flores ÉM de M, Baldisserotto B, Heinzmann BM, de Oliveira JV, Secco Popiolski A, Minozzo M. Chemical composition and antibacterial activity of Aloysia triphylla (L’Hérit) Britton extracts obtained by pressurized CO2 extraction. Braz Arch Biol Techn 2013 56: 283–292.

Jiménez-Ferrer E, Santillán-Urquiza MA, Alegría-Herrera E, Zamilpa A, Noguerón-Merino C, Tortoriello J, Navarro-García V, Avilés-Flores M, Fuentes-Mata M, Herrera-Ruíz M. Anxiolytic effect of fatty acids and terpenes fraction from Aloysia triphylla: Serotoninergic, GABAergic and glutamatergic implications. Biomed Pharmacother 2017 96: 320–327.

Becker AG, Luz RK, Mattioli CC, Nakayama CL, de Souza e Silva W, de Oliveira Paes Leme F, Pinto de Mendoza Mendes HC, Heinzmann BM, Baldisserotto B. Can the essential oil of Aloysia triphylla have anesthetic effect and improve the physiological parameters of the carnivorous freshwater catfish Lophiosilurus alexandri after transport? Aquaculture 2017 481: 184–190.

Daniel AP, Veeck APL, Klein B, Ferreira LF, da Cunha MA, Parodi TV, Zeppenfeld CC, Schmidt D, Caron BO, Heinzmann BM, Baldisserotto B, Emanuelli T. Using the Essential Oil of Aloysia triphylla (L’Her.) Britton to Sedate Silver Catfish (Rhamdia quelen) during Transport Improved the Chemical and Sensory Qualities of the Fish during Storage in Ice. J Food Sci 2014 79: S1205–S1211.

Parodi TV, Cunha MA, Heldwein CG, de Souza DM, Martins AC, Garcia LDO, Junior WW, Monserrat JM, Schmidt D, Caron BO, Heinzmann B, Baldisserotto B. The anesthetic efficacy of eugenol and the essential oils of Lippia alba and Aloysia triphylla in post-larvae and sub-adults of Litopenaeus vannamei (Crustacea, Penaeidae). Comp Bioch Phys 2012 155(3): 462-468.

Abuhamdah S, Abuhamdah R, Howes MJR, Al-Olimat S, Ennaceur A, Chazot PL. Pharmacological and neuroprotective profile of an essential oil derived from leaves of Aloysia citrodora Palau. Journal of Pharmacy and Pharmacology 2015; 67: 1306–1315.

Zhang A, Fang H, Wang Y, Yan G, Sun H, Zhou X, Wanjg Y, Liu L, Wang X. Discovery and verification of the potential targets from bioactive molecules by network pharmacology-based target prediction combined with high-throughput metabolomics. RSC Adv 2017 7: 51069–51078.

Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocyc Compd 2014 50: 444–457.

Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021 49: W5–W14.

Santos-Gomes PC, Fernandes-Ferreira M, Vicente AMS. Composition of the Essential Oils from Flowers and Leaves of Vervain [Aloysia triphylla (L’Herit.) Britton] Grown in Portugal. http://dx.doi.org/101080/1041290520059698835 2011; 17: 73–78.

Saldívar-González F, Prieto-Martínez FD, Medina-Franco JL. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación Química 2017; 28: 51–58.

Deutch AY, Roth RH. Pharmacology and Biochemistry of Synaptic Transmission: Classic Transmitters. From Mol Net 2004 245–278.

Ramachandran VS. Encyclopedia of the Human Brain. 2002 pp353–367.

Park JY, Lee Y, Lee HJ, Kwon YS, Chun W. In silico screening of GABA aminotransferase inhibitors from the constituents of Valeriana officinalis by molecular docking and molecular dynamics simulation study. Journal of Molecular Modeling 2020; 26: 1–13.

Gross AV, Stolz ED, Müller LG, Rates SMK, Ritter MR. Medicinal plants for the “nerves”: a review of ethnobotanical studies carried out in South Brazil. Acta Botanica Brasilica 2019; 33: 269–282.

Wagner JG. Pharmacokinetics for the Pharmaceutical Scientist. Pharmacokinetics for the Pharmaceutical Scientist 2018. doi:10.1201/9780203743652.

Rowland M, Peck C, Tucker G. Physiologically-Based Pharmacokinetics in Drug Development and Regulatory Science. http://dx.doi.org/101146/annurev-pharmtox-010510-100540 2011; 51: 45–73.

Patel MM, Patel BM. Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs 2017 31:2 2017; 31: 109–133.

Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: Useful guidelines for drug design. European Journal of Medicinal Chemistry 2020; 195: 112290.

Takenaka T, Harada N, Kuze J, Chiba M, Iwao T, Matsunaga T. Application of a Human Intestinal Epithelial Cell Monolayer to the Prediction of Oral Drug Absorption in Humans as a Superior Alternative to the Caco-2 Cell Monolayer. Journal of Pharmaceutical Sciences 2016; 105: 915–924.

Korzekwa K, Nagar S. Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning. Pharmaceutical Research 2017; 34: 544–551.

Holford N, Yim DS. Volume of Distribution. Translational and Clinical Pharmacology 2021; 24: 74–77.

Phang-Lyn S, Llerena VA. Biochemistry, Biotransformation. StatPearls 2021.https://www.ncbi.nlm.nih.gov/books/NBK544353/ (accessed 20 Apr2022).

Varma M v., Steyn SJ, Allerton C, El-Kattan AF. Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). Pharmaceutical Research 2015 32:12 2015; 32: 3785–3802.

J H, V G. Half Life. Economist 2020; 381: 81–82.




DOI: https://doi.org/10.25009/eb.v13i33.2615

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.