La adaptación a prismas: una ventana a la conducta y la cognición
Resumen
La adaptación a prismas (AP) es un paradigma experimental y un área de estudio para comprender el control sensoriomotor, los procesos cognitivos y las áreas anatómicas funcionales del cerebro involucradas en la adaptación visomotora, y que podría aplicarse en diferentes situaciones prácticas. Las investigaciones han revelado que la AP influye en el funcionamiento de la corteza prefrontal y de áreas subcorticales como el cerebelo y los ganglios basales, lo que indica que la AP requiere la participación de mecanismos cognitivos descendentes y ascendentes. Esta revisión ofrece un análisis histórico de los experimentos pioneros de Stratton y Ardigò a finales del siglo XIX, considerados los primeros experimentos de AP. También se discuten teorías que propusieron mecanismos visuales, motores y propioceptivos para la AP, o la teoría de la referencia, que plantea que la AP es el resultado de la retroalimentación de movimientos autogenerados que el cerebro utiliza para predecir eventos y generar una respuesta motora, por mencionar solo dos teorías. Como parte del desarrollo teórico, se describe la importancia de las investigaciones con pacientes o condiciones como las enfermedades de Parkinson y Huntington, que han sido esenciales para describir el papel de diferentes áreas cerebrales. La última parte de la revisión incluye una discusión sobre las aplicaciones clínicas de la AP como herramienta para mejorar la eficiencia de los procedimientos quirúrgicos para el estrabismo o para reducir los errores espaciales en pacientes con negligencia espacial. Así, el lector puede comprender cuán flexible es este paradigma, pero también cuán esencial es la AP para entender cómo funciona y se adapta el cerebro.
Abstract
Prism adaptation (PA) refers to how individuals adjust their motor and perceptual responses to compensate for visual distortions caused by prism lenses. This experimental paradigm is widely used to investigate sensorimotor and cognitive processes underlying adaptation and learning and the neural substrates and mechanisms that support these processes. Research has shown that PA influences the functioning of the prefrontal cortex and subcortical areas such as the cerebellum and basal ganglia, indicating that PA engages both top-down and bottom-up cognitive mechanisms. This review provides a historical overview of the pioneering experiments by Stratton and Ardigò in the late 19th century, which marked the beginning of PA research. It also discusses key theories, such as the proposal of visual, motor, and proprioceptive mechanisms for PA, and the reafference theory., which suggests that PA results from feedback from self-generated movements that the brain uses to predict events and generate motor responses.
Additionally, we emphasize the importance of research involving individuals with conditions such as Parkinson's and Huntington's diseases, which have been instrumental in clarifying the roles of different brain areas. The final section of the review examines the clinical applications of PA, including its use as a tool to improve the efficiency of surgical procedures for strabismus and to reduce spatial errors in patients with spatial neglect. This review aims to provide readers with a comprehensive overview of the methodologies employed in PA research, the cognitive and neural mechanisms required for adapting behavior to visual disruptions, and the potential for PA to evolve from a basic research paradigm into a practical tool for improving various medical conditions.
Keywords: Prism adaptation; top-down mechanisms; bottom-up mechanisms; cognitive control; strabismus; spatial negligence.
Palabras clave
Texto completo:
PDFReferencias
Panico, F., Rossetti, Y., & Trojano, L. (2020). On the mechanisms underlying Prism Adaptation: A review of neuro-imaging and neuro-stimulation studies. Cortex, 123(November), 57–71. https://doi.org/10.1016/j.cortex.2019.10.003
Fernandez-Ruiz, J., & Díaz, R. (1999). Prism Adaptation and Aftereffect: Specifying the Properties of a Procedural Memory System. Learning & Memory, 6(1), 47–53. https://doi.org/10.1101/lm.6.1.47
Redding, G. M., & Wallace, B. (2006). Generalization of prism adaptation. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1006–1022. https://doi.org/10.1037/0096-1523.32.4.1006
Cohen, H. B. (1966). Some Critical Factors in Prism-Adaptation. The American Journal of Psychology, 79(2), 285. https://doi.org/10.2307/1421136
Redding, G. M., & Wallace, B. (2002). Strategie Calibration and Spatial Alignment: A Model From Prism Adaptation. Journal of Motor Behavior, 34(2), 126–138. https://doi.org/10.1080/00222890209601935
Fernandez-Ruiz, J., Diaz, R., Moreno-Briseño, P., Campos-Romo, A., & Ojeda, R. (2006). Rapid Topographical Plasticity of the Visuomotor Spatial Transformation. The Journal of Neuroscience, 26(7), 1986–1990. https://doi.org/10.1523/JNEUROSCI.4023-05.2006
von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Sciences, 8(6), 266–272. https://doi.org/10.1016/j.tics.2004.04.002
McDonnell, P. M., & Abraham, W. C. (1979). Adaptation to Displacing Prisms in Human Infants. Perception, 8(2), 175–185. https://doi.org/10.1068/p080175
McDonnell, P. M., & Abraham, W. C. (1981). A Longitudinal Study of Prism Adaptation in Infants from Six to Nine Months of Age. Child Development, 52(2), 463–469. https://doi.org/10.1111/j.1467-8624.1981.tb03069.x
Gómez-Moya, R., Díaz, R., & Fernandez-Ruiz, J. (2016). Different visuomotor processes maturation rates in children support dual visuomotor learning systems. Human Movement Science, 46, 221–228. https://doi.org/10.1016/j.humov.2016.01.011
Dekker, T., & Lisi, M. (2020). Sensory Development: Integration before Calibration. Current Biology, 30(9), R409–R412. https://doi.org/10.1016/j.cub.2020.02.060
Gómez-Moya, R., Diaz, R., Vaca-Palomares, I., & Fernandez-Ruiz, J. (2020). Procedural and Strategic Visuomotor Learning Deficits in Children With Developmental Coordination Disorder. Research Quarterly for Exercise and Sport, 91(3), 386–393. https://doi.org/10.1080/02701367.2019.1675852
Little, C. E., Dukelow, S. P., Schneider, K. J., & Emery, C. A. (2022). Using a Prism Paradigm to Identify Sensorimotor Impairment in Youth Following Concussion. Journal of Head Trauma Rehabilitation, 37(4), 189–198. https://doi.org/10.1097/HTR.0000000000000690
Tottenham, L. S., & Saucier, D. M. (2004). Throwing Accuracy during Prism Adaptation: Male Advantage for Throwing Accuracy is Independent of Prism Adaptation Rate. Perceptual and Motor Skills, 98(3_suppl), 1449–1455. https://doi.org/10.2466/pms.98.3c.1449-1455
Moreno-Briseño, P., Díaz, R., Campos-Romo, A., & Fernandez-Ruiz, J. (2010). Sex-related differences in motor learning and performance. Behavioral and Brain Functions, 6(1), 74. https://doi.org/10.1186/1744-9081-6-74
Elliott, D. (1982). Gender Differences in Prism Adaptation as Influenced by a Secondary Task. Perceptual and Motor Skills, 54(3), 795–799. https://doi.org/10.2466/pms.1982.54.3.795
Aziz, J. R., MacLean, S. J., Krigolson, O. E., & Eskes, G. A. (2020). Visual Feedback Modulates Aftereffects and Electrophysiological Markers of Prism Adaptation. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.00138
Scheffels, J. F., Eling, P., & Hildebrandt, H. (2024). Is recalibration more important than realignment in prism adaptation training for visuospatial neglect? A randomized controlled trial. Neuropsychological Rehabilitation, 1–22. https://doi.org/10.1080/09602011.2024.2314877
Cohen, M. M. (1967). Continuous versus Terminal Visual Feedback in Prism Aftereffects. Perceptual and Motor Skills, 24(3_suppl), 1295–1302. https://doi.org/10.2466/pms.1967.24.3c.1295
Chapman, H. L., Eramudugolla, R., Gavrilescu, M., Strudwick, M. W., Loftus, A., Cunnington, R., & Mattingley, J. B. (2010). Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms. Neuropsychologia, 48(9), 2595–2601. https://doi.org/10.1016/j.neuropsychologia.2010.05.006
Norris, S. A., Greger, B. E., Martin, T. A., & Thach, W. T. (2001). Prism adaptation of reaching is dependent on the type of visual feedback of hand and target position. Brain Research, 905(1–2), 207–219. https://doi.org/10.1016/S0006-8993(01)02552-5
Kitazawa, S., Kohno, T., & Uka, T. (1995). Effects of delayed visual information on the rate and amount of prism adaptation in the human. The Journal of Neuroscience, 15(11), 7644–7652. https://doi.org/10.1523/JNEUROSCI.15-11-07644.1995
Hamilton, C. R., & Bossom, J. (1964). Decay of prism aftereffects. Journal of Experimental Psychology, 67(2), 148–150. https://doi.org/10.1037/h0047777
Redding, G. M., & Wallace, B. (2008). Intermanual Transfer of Prism Adaptation. Journal of Motor Behavior, 40(3), 246–264. https://doi.org/10.3200/JMBR.40.3.246-264
Taub, E., & Goldberg, I. A. (1973). Prism Adaptation: Control of Intermanual Transfer by Distribution of Practice. Science, 180(4087), 755–757. https://doi.org/10.1126/science.180.4087.755
Fernández-Ruiz, J., Hall-Haro, C., Díaz, R., Mischner, J., Vergara, P., & Lopez-Garcia, J. C. (2000). Learning Motor Synergies Makes Use of Information on Muscular Load. Learning & Memory, 7(4), 193–198. https://doi.org/10.1101/lm.7.4.193
Tuan, K.-M., & Jones, R. (1997). Adaptation to the prismatic effects of refractive lenses. Vision Research, 37(13), 1851–1857. https://doi.org/10.1016/S0042-6989(96)00325-2
Redding, G. M., & Wallace, B. (2011). Prism adaptation in left-handers. Attention, Perception, & Psychophysics, 73(6), 1871–1885. https://doi.org/10.3758/s13414-011-0147-1
Stratton, G. M. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychological Review, 3(6), 611–617. https://doi.org/10.1037/h0072918
Giora, E., & Büttemeyer, W. (2020). Roberto Ardigò as a forerunner of George M. Stratton's experiments on inverted vision. History of Psychology, 23(1), 26–39. https://doi.org/10.1037/hop0000126
Harris, C. S. (1963). Adaptation to displaced vision: Visual, motor, or proprioceptive change? Science, 140(3568), 812–813. https://doi.org/10.1126/science.140.3568.812
Harris, C. S. (1965). Perceptual adaptation to inverted, reversed, and displaced vision. Psychological Review, 72(6), 419–444. https://doi.org/10.1037/h0022616
Held, R., & Gottlieb, N. (1958). Technique for Studying Adaptation to Disarranged Hand-Eye Coordination. Perceptual and Motor Skills, 8(3), 83–86. https://doi.org/10.2466/pms.1958.8.3.83
Weinstein, S., Richlin, M., Weisinger, M., & Fisher, L. (1967). Adaptation to visual and nonvisual rearrangement. NASA CR-663. NASA Contractor Report. NASA CR. United States. National Aeronautics and Space Administration, 1–25.
McLaughlin, S. C., & Webster, R. G. (1967). Changes in straight-ahead eye position during adaptation to wedge prisms. Perception & Psychophysics, 2(1), 37–44. https://doi.org/10.3758/BF03210064
Newport, R., & Schenk, T. (2012). Prisms and neglect: What have we learned? Neuropsychologia, 50(6), 1080–1091. https://doi.org/10.1016/j.neuropsychologia.2012.01.023
Sainburg, R. L., & Mutha, P. K. (2016). Error Detection Is Critical for Visual-Motor Corrections. Motor Control, 20(2), 187–194. https://doi.org/10.1123/mc.2015-0022
Redding, G. M., & Wallace, B. (2002). Strategie Calibration and Spatial Alignment: A Model From Prism Adaptation. Journal of Motor Behavior, 34(2), 126–138. https://doi.org/10.1080/00222890209601935
Sülzenbrück, S., & Heuer, H. (2009). Functional independence of explicit and implicit motor adjustments. Consciousness and Cognition, 18(1), 145–159. https://doi.org/10.1016/j.concog.2008.12.001
Henriques, D. Y. P., Medendorp, W. P., Khan, A. Z., & Crawford, J. D. (2002). Visuomotor transformations for eye-hand coordination. In Progress in Brain Research (Vol. 140, pp. 329–340). https://doi.org/10.1016/S0079-6123(02)40060-X
Wong, A. L., Haith, A. M., & Krakauer, J. W. (2015). Motor Planning. The Neuroscientist, 21(4), 385–398. https://doi.org/10.1177/1073858414541484
Diedrichsen, J., & Kornysheva, K. (2015). Motor skill learning between selection and execution. Trends in Cognitive Sciences, 19(4), 227–233. https://doi.org/10.1016/j.tics.2015.02.003
Newport, R., & Jackson, S. R. (2006). Posterior parietal cortex and the dissociable components of prism adaptation. Neuropsychologia, 44(13), 2757–2765. https://doi.org/10.1016/j.neuropsychologia.2006.01.007
Ackerley, R., Borich, M., Oddo, C. M., & Ionta, S. (2016). Insights and Perspectives on Sensory-Motor Integration and Rehabilitation. Multisensory Research, 29(6–7), 607–633. https://doi.org/10.1163/22134808-00002530
Redding, G. M., Rossetti, Y., & Wallace, B. (2005). Applications of prism adaptation: a tutorial in theory and method. Neuroscience & Biobehavioral Reviews, 29(3), 431–444. https://doi.org/10.1016/j.neubiorev.2004.12.004
Hanajima, R., Shadmehr, R., Ohminami, S., Tsutsumi, R., Shirota, Y., Shimizu, T., Tanaka, N., Terao, Y., Tsuji, S., Ugawa, Y., Uchimura, M., Inoue, M., & Kitazawa, S. (2015). Modulation of error-sensitivity during a prism adaptation task in people with cerebellar degeneration. Journal of Neurophysiology, 114(4), 2460–2471. https://doi.org/10.1152/jn.00145.2015
Prablanc, C., Panico, F., Fleury, L., Pisella, L., Nijboer, T., Kitazawa, S., & Rossetti, Y. (2020). Adapting terminology: clarifying prism adaptation vocabulary, concepts, and methods. Neuroscience Research, 153, 8–21. https://doi.org/10.1016/j.neures.2019.03.003
McIntosh, R. D., Rossetti, Y., & Milner, A. D. (2002). Prism adaptation improves chronic visual and haptic neglect: A single case study. Cortex, 38(3), 309–320. https://doi.org/10.1016/S0010-9452(08)70662-2
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms: I. Focal olivocerebellar lesions impair adaptation. Brain, 119(4), 1183–1198. https://doi.org/10.1093/brain/119.4.1183
Michel, C., Pisella, L., Prablanc, C., Rode, G., & Rossetti, Y. (2007). Enhancing Visuomotor Adaptation by Reducing Error Signals: Single-step (Aware) versus Multiple-step (Unaware) Exposure to Wedge Prisms. Journal of Cognitive Neuroscience, 19(2), 341–350. https://doi.org/10.1162/jocn.2007.19.2.341
Terruzzi, S., Crivelli, D., Pisoni, A., Mattavelli, G., Romero Lauro, L. J., Bolognini, N., & Vallar, G. (2021). The role of the right posterior parietal cortex in prism adaptation and its aftereffects. Neuropsychologia, 150(June 2020), 107672. https://doi.org/10.1016/j.neuropsychologia.2020.107672
Boukrina, O., & Chen, P. (2021). Neural Mechanisms of Prism Adaptation in Healthy Adults and Individuals with Spatial Neglect after Unilateral Stroke: A Review of fMRI Studies. Brain Sciences, 11(11), 1468. https://doi.org/10.3390/brainsci11111468
Panico, F., Fleury, L., Trojano, L., & Rossetti, Y. (2021). Prism Adaptation in M1. Journal of Cognitive Neuroscience, 33(4), 563–573. https://doi.org/10.1162/jocn_a_01668
Saj, A., Cojan, Y., Assal, F., & Vuilleumier, P. (2019). Prism adaptation effect on neural activity and spatial neglect depend on brain lesion site. Cortex, 119, 301–311. https://doi.org/10.1016/j.cortex.2019.04.022
Canavan, A. G. M., Passingham, R. E., Marsden, C. D., Quinn, N., Wyke, M., & Polkey, C. E. (1990). Prism adaptation and other tasks involving spatial abilities in patients with Parkinson's disease, patients with frontal lobe lesions and patients with unilateral temporal lobectomies. Neuropsychologia, 28(9), 969–984. https://doi.org/10.1016/0028-3932(90)90112-2
Luauté, J., Schwartz, S., Rossetti, Y., Spiridon, M., Rode, G., Boisson, D., & Vuilleumier, P. (2009). Dynamic Changes in Brain Activity during Prism Adaptation. The Journal of Neuroscience, 29(1), 169–178. https://doi.org/10.1523/JNEUROSCI.3054-08.2009
Goedert, K. M., Zhang, J. Y., & Barrett, A. M. (2015). Prism adaptation and spatial neglect: The need for dose-finding studies. Frontiers in Human Neuroscience, 9(APR), 1–7. https://doi.org/10.3389/fnhum.2015.00243
Baizer, J. S., Kralj-Hans, I., & Glickstein, M. (1999). Cerebellar Lesions and Prism Adaptation in Macaque Monkeys. Journal of Neurophysiology, 81(4), 1960–1965. https://doi.org/10.1152/jn.1999.81.4.1960
Panico, F., Sagliano, L., Grossi, D., & Trojano, L. (2016). Cerebellar cathodal tDCS interferes with recalibration and spatial realignment during prism adaptation procedure in healthy subjects. Brain and Cognition, 105, 1–8. https://doi.org/10.1016/j.bandc.2016.03.002
Hanajima, R., Shadmehr, R., Ohminami, S., Tsutsumi, R., Shirota, Y., Shimizu, T., Tanaka, N., Terao, Y., Tsuji, S., Ugawa, Y., Uchimura, M., Inoue, M., & Kitazawa, S. (2015). Modulation of error-sensitivity during a prism adaptation task in people with cerebellar degeneration. Journal of Neurophysiology, 114(4), 2460–2471. https://doi.org/10.1152/jn.00145.2015
Fernandez-Ruiz, J., Velásquez-Perez, L., Díaz, R., Drucker-Colín, R., Pérez-González, R., Canales, N., Sánchez-Cruz, G., Martínez-Góngora, E., Medrano, Y., Almaguer-Mederos, L., Seifried, C., & Auburger, G. (2007). Prism adaptation in spinocerebellar ataxia type 2. Neuropsychologia, 45(12), 2692–2698. https://doi.org/10.1016/j.neuropsychologia.2007.04.006
Hashimoto, Y., Honda, T., Matsumura, K., Nakao, M., Soga, K., Katano, K., Yokota, T., Mizusawa, H., Nagao, S., & Ishikawa, K. (2015). Quantitative Evaluation of Human Cerebellum-Dependent Motor Learning through Prism Adaptation of Hand-Reaching Movement. PLOS ONE, 10(3), e0119376. https://doi.org/10.1371/journal.pone.0119376
Andres, D. S., Merello, M., & Darbin, O. (2017). Editorial: Pathophysiology of the Basal Ganglia and Movement Disorders: Gaining New Insights from Modeling and Experimentation, to Influence the Clinic. Frontiers in Human Neuroscience, 11(September), 10–12. https://doi.org/10.3389/fnhum.2017.00466
Stern, Y., Mayeux, R., Hermann, A., & Rosen, J. (1988). Prism adaptation in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 51(12), 1584–1587. https://doi.org/10.1136/jnnp.51.12.1584
Fernandez‐Ruiz, J., Diaz, R., Hall‐Haro, C., Vergara, P., Mischner, J., Nuñez, L., Drucker‐Colin, R., Ochoa, A., & Alonso, M. E. (2003). Normal prism adaptation but reduced aftereffect in basal ganglia disorders using a throwing task. European Journal of Neuroscience, 18(3), 689–694. https://doi.org/10.1046/j.1460-9568.2003.02785.x
Swainson, A., Woodward, K. M., Boca, M., Rolinski, M., Collard, P., Cerminara, N. L., Apps, R., Whone, A. L., & Gilchrist, I. D. (2023). Slower rates of prism adaptation but intact aftereffects in patients with early to mid-stage Parkinson's disease. Neuropsychologia, 189(May), 108681. https://doi.org/10.1016/j.neuropsychologia.2023.108681
Gutierrez‐Garralda, J. M., Moreno‐Briseño, P., Boll, M., Morgado‐Valle, C., Campos‐Romo, A., Diaz, R., & Fernandez‐Ruiz, J. (2013). The effect of Parkinson's disease and Huntington's disease on human visuomotor learning. European Journal of Neuroscience, 38(6), 2933–2940. https://doi.org/10.1111/ejn.12288
Paulsen, J. S., Butters, N., Salmon, D. P., Heindel, W. C., & Swenson, M. R. (1993). Prism adaptation in Alzheimer's and Huntington's disease. Neuropsychology, 7(1), 73–81. https://doi.org/10.1037/0894-4105.7.1.73
Qanat, A. S., Alsuheili, A., Alzahrani, A., Faydhi, A. A., Albadri, A., & Alhibshi, N. (2020). Assessment of Different Types of Strabismus Among Pediatric Patients in a Tertiary Hospital in Jeddah. Cureus, 12(12), 1–7. https://doi.org/10.7759/cureus.11978
Gietzelt, C., Fricke, J., Neugebauer, A., & Hedergott, A. (2022). Prism adaptation test before strabismus surgery in patients with decompensated esophoria and decompensated microesotropia. International Ophthalmology, 42(7), 2195–2204. https://doi.org/10.1007/s10792-022-02219-3
Takada, R., Matsumoto, F., Wakayama, A., Numata, T., Tanabe, F., Abe, K., & Kusaka, S. (2021). Efficacies of preoperative prism adaptation test and monocular occlusion for detecting the maximum angle of deviation in intermittent exotropia. BMC Ophthalmology, 21(1), 304. https://doi.org/10.1186/s12886-021-02060-9
Karnath, H. O., & Rorden, C. (2012). The anatomy of spatial neglect. Neuropsychologia, 50(6), 1010–1017. https://doi.org/10.1016/j.neuropsychologia.2011.06.027
Li, K., & Malhotra, P. A. (2015). Spatial neglect. Practical Neurology, 15(5), 333–339. https://doi.org/10.1136/practneurol-2015-001115
Bartolomeo, P., D’Erme, P., Perri, R., & Gainotti, G. (1998). Perception and action in hemispatial neglect. Neuropsychologia, 36(3), 227–237. https://doi.org/10.1016/S0028-3932(97)00104-8
Bagattini, C., Mele, S., Brignani, D., & Savazzi, S. (2015). No causal effect of left hemisphere hyperactivity in the genesis of neglect-like behavior. Neuropsychologia, 72, 12–21. https://doi.org/10.1016/j.neuropsychologia.2015.04.010
Nakamura, K., Oga, T., Takahashi, M., Kuribayashi, T., Kanamori, Y., Matsumiya, T., Maeno, Y., & Yamamoto, M. (2012). Symmetrical hemispheric priming in spatial neglect: A hyperactive left-hemisphere phenomenon? Cortex, 48(4), 421–428. https://doi.org/10.1016/j.cortex.2010.12.008
Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., & Perenin, M.-T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395(6698), 166–169. https://doi.org/10.1038/25988
Nijboer, T. C. W. W., Mcintosh, R. D., Nys, G. M. S. S., Dijkerman, H. C., David Milner, A., Nijboer, C. W., & Milner, A. D. (2008). Prism adaptation improves voluntary but not automatic orienting in neglect. NeuroReport, 19(3), 293–298. https://doi.org/10.1097/WNR.0b013e3282f4cb67
Vilimovsky, T., Chen, P., Hoidekrova, K., Petioky, J., & Harsa, P. (2021). Prism adaptation treatment to address spatial neglect in an intensive rehabilitation program: A randomized pilot and feasibility trial. PLOS ONE, 16(1), e0245425. https://doi.org/10.1371/journal.pone.0245425
DOI: https://doi.org/10.25009/eb.v16i41.2643
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una revista de publicación continua editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.