El papel de la microglía en la señalización neuroinflamatoria y la respuesta neuroinmune

Daniel Quesada-Yamasaki, Edgardo Arce-Soto, Karol Ramírez, Jaime Fornaguera-Trías, Andrea Mora-Gallegos

Resumen


La neuroinflamación consiste en un estado reactivo del componente inmune en el sistema nervioso, y se encuentra mediada por efectores celulares, como la microglía y los astrocitos, y efectores moleculares solubles como citoquinas proinflamatorias. Recientemente, se ha investigado en el área de la neuroinmunología el papel del estrés crónico en el aumento de la señalización neuroinflamatoria y sus implicaciones en la alteración del funcionamiento normal del Sistema Nervioso Central (SNC) debido a que provocan una alta respuesta proinflamatoria y una inducción de la proliferación microglial en diversas regiones cerebrales. Además, otro factor que se menciona en la literatura es la relación entre el envejecimiento y microglía, ya que el estudio de dicha señalización neuroinflamatoria ha cobrado relevancia debido a la evidencia de su vinculación con estados patológicos del sistema nervioso como algunas enfermedades neurodegenerativas o alteración de procesos de memoria en el envejecimiento. Se llevó a cabo una revisión sobre el tema, cubriendo aspectos como la caracterización de la respuesta inmune en el SNC, el papel de la microglía como células efectoras de la neuroinflamación, el vínculo existente entre el estrés y el aumento de la señalización neuroinflamatoria y, por último, las evidencias de diferencias en los fenómenos neuroinflamatorios según la edad de los individuos. Con la presente investigación se aclaran algunas concepciones sobre la respuesta inmune en el SNC y se derivan algunas posibles áreas de investigación relacionados con los temas abordados.

Palabras clave: Respuesta inmune, Neuroinflamación, Estrés, Microglía, Edad.

 

Abstract

Neuroinflammation can be understood as a reactive status of the immune component in the nervous system, which is mediated mainly by microglia and astrocytes, and soluble effectors such as proinflammatory cytokines. Recently in the area of neuroimmunology, research about the role of chronic stress on increasing neuroinflammatory signaling and its implications in altering the normal functioning of the central nervous system (CNS) has been conducted because it can cause an exaggerated  proinflammatory response and induce microglial proliferation in various brain regions. In addition, another factor mentioned in literature is the link between aging and microglia, as the study of this neuroinflammatory signaling has gained importance because of the evidence of its connection with pathological states of the nervous system such as certain neurodegenerative diseases or impaired memory in aging. A review on the subject was conducted, covering aspects such as the characterization of the immune response in the CNS, the role of microglia as effector cells of neuroinflammation, the link between stress and increased neuroinflammatory signaling and, finally, evidence of the differences in the neuroinflammatory profile through aging. With this literature review some conceptions on the immune response in the CNS are clarified and some possible research areas derive from the topics discussed.

Keywords: Respuesta inmune; neuroinflamación; estrés; microglía; edad.


Palabras clave


Respuesta inmune; neuroinflamación; estrés; microglía; edad.

Texto completo:

PDF

Referencias


Wes P, Sayed F, Bard F, Gan L. Targeting microglia for the treatment of Alzheimer’s disease. Glia 2016; 64(6): 1-23.

Billingham R, Boswell T. Studies on the problem of corneal homografts. P Roy Soc Lond B Bio 1953; 141(904): 392-406.

Barker C, Billingham R. Immunologically privileged sites. Adv Immunol 1977; 25: 1-54.

Hong S, Van Kaer L. Immune Privilege: Keeping an Eye on Natural Killer T Cells. J Exp Med 1999; 190(9): 1197–1200.

Galea I, Bechmann I, Perry H. What is immune privilege (not)? Trends Immunol 2007; 28(1): 12-18.

Shrestha R, Millington O, Brewer J, Bushell T. Is Central Nervous System an Immune-Privileged site? Kathmandu Univ Med J 2013; 41(1): 102-107.

Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 2006; 113(4): 477-485.

González J, Toro J. La neuroglia en la respuesta inmune del sistema nervioso central. Acta Neurol Colomb 2007; 23: 25-30.

Engelhardt, B. The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Design 2008; 14(16): 1555-1565.

Shrikant P, Benveniste E. The Central Nervous System as an immunocompetent organ: role of glial cells in antigen presentation. J Immunol 1996; 157: 1819-1822.

Neumann, H. Control of Glial Immune Function by Neurons. Glia2001; 191-199.

Marín-Teva L, Cuadros M, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. Neuron Glia Biol 2011; 7(1): 25-40.

Bessis A, Bechade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia 2007; 55: 233–238.

Schafer D, Stevens B. Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harb Perspect Biol2015; 7(10): 1-18.

Escalante-Martínez D, Chavarría A, Gutiérrez-Ospina G, Romo-González T. Evaluación cualitativa del estado de activación de la microglía a largo plazo en el cerebro de ratones enucleados al nacer. Rev Med UV 2009; 9(2): 13-18.

Kindt T, Goldsby R, Osborne B. Inmunología de Kuby. 6a ed. México: McGraw Hill Interamericana, 2007; 8-14.

Niu N, Zhang J, Guo Y, Zhao Y, Korteweg C, Gu J. Expression and distribution of immunoglobulin G and its receptors in the human nervous system. Int J Biochem Cell B 2011; 43: 556-563.

Aloisi, F. Immune function of microglia. Glia 2001; 36: 165–179.

Streit W, Mrak R, Griffin W. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004; 1(14): 1-4.

Olson J, Miller S. Microlgia initiate Central Nervous System innate and adaptive immune responses through multiple TLRs. J Immunol 2004; 173: 3916-3924.

Marinelli C, Di Liddo R, Facci L, Bertalot T, Conconi M, Zusso M, Skaper S, Giusti P. Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. J Neuroinflammation 2015; 12 (244): 1-20.

Hanisch U. Microglia as a source and target of cytokines. Glia 2002; 40: 140-155.

Lyman M, Lloyd D, Ji X, Vizcaychipi M, Ma D. Neuroinflammation: The role and consequences. Neurosci Res 2014; 79: 1-12.

Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001; 21(6): 1975-1982.

Boje K, Arora P. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992; 587(2): 250-256.

Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. Journal Biol Chem 2006; 281(30): 21362-21368.

Liu B, Hong J. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. Journal Pharmacol Exp Ther 2003; 304: 1-7.

Hong H, Kim BS, Im H. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 2016; 20(Suppl 1): S2-7.

Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Moller T, Orre M, Kamphuis W, Hol EM, Boddeke EW, Eggen BJ. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: A co-expression meta-analysis. Acta Neuropathol Commun 2015; 3:31.

Frank-Cannon T, Alto L, McAlpine F, Tansey M. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4(47): 1-13.

Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement 2016; 12(6): 719-732.

Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson's disease. Ann Neurol 2003; 53 (suppl 3):549–60.

González-Torres L, Armendáriz-Borunda, J. Aspectos inmunológicos en la enfermedad de Parkinson. Arch Neurocien 2005; 10(3): 168-174.

Martin H, Santoro M, Mustafah S, Riedel G, Forrester J, Teismann P. Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson’s disease. Glia 2016; 64:386-396.

Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med 2008; 205(8): 1869-1877.

Crotti A, Glass C. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 2015; 36(6): 364-373.

Zhang H, Tong R, Bai L, Shi J, Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg Med Chem 2016; 24: 1419-1430.

Manolio T. Bringing genome-wide association findings into clinical use. Nat Rev Gen 2013; 14: 549–558.

Fink G. Stress Science: Neuroendocrinology. San Diego, California: Elsevier, 2010; 5-7.

Herman J. Neural pathways of stress integration: Relevance to alcohol abuse. Alcohol Res 2012; 34(4): 441-447.

Munhoz C, García-Bueno B, Madrigal J, Lepsch L, Scavone C, Leza J. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 2008; 41: 1037-1046.

O’Connor K, Johnson J, Hansen M, Wieseler-Frank J, Maksimova E, Watkins L, Maier S. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res 2003; 991: 123-132.

Blandino P, Barnun C, Deak T. The involvement of norepinephrine and microglia in hypothalamic and splenic IL-1B responses to stress. J Neuroimmunol 2006; 173: 87-95.

Tynan R, Naicker S, Hinwood M, Nalivaiko E, Buller K, Pow D, Day T, Walker F. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 2010; 24: 1058-1068.

Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 2009; 207: 24-31.

Nair A, Bonneau R. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 2006; 171: 72-85.

Nakatani Y, Amano T, Tsuji M, Takeda H. Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor. Life Sci 2012; 91: 761-77.

Dinkel K, MacPherson A, Sapolsky R. Novel glucococorticoid effects on acute inflammation in the CNS. J Neurochem 2003; 84: 705-716.

Ye S, Johnson R. Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 1999; 93: 139-148.

Sierra A, Gottfreid-Blackmore A, McEwen B, Bullock C. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007; 55: 412-424.

Henry C, Huang Y, Wynne A, Godbout J. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both proinflammatory IL-1B and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009; 23: 309-317.

Hart A, Wyttenbach A, Perry V, Teeling J. Age related changes in microglial phenotype vary between CNS regions: Grey versus white matter differences. Brain Behav Immun 2012; 26: 754-765.

Barrientos R, Thompson V, Kitt M, Amat J, Hale M, Frank M, Crysdale N, Stamper C, Hennessey P, Watkins L, Spencer R, Lowry C, Maier S. Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiol Aging 2015; 36: 1483-1495.




DOI: https://doi.org/10.25009/eb.v7i16.2570

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.