Bases celulares y moleculares de la cronopatología en la enfermedad de Alzheimer
Resumen
Los relojes biológicos son osciladores anticipatorios autónomos que desempeñan un papel fundamental en la organización y procesamiento de la información desde el genoma hasta el desarrollo de los organismos completos. Esta organización compleja y jerárquica determina que la alteración crónica de los ritmos circadianos sea un factor de riesgo importante para una variedad de enfermedades, incluyendo las patologías neurodegenerativas. La enfermedad de Alzheimer (EA) representa el trastorno neurodegenerativo más prevalente en nuestra sociedad actual, y durante mucho tiempo ha sido asociado con alteraciones de ritmos circadianos (ciclos de sueño/ vigilia, variaciones en la amplitud del ciclo de liberación de melatonina, cortisol, glucosa e insulina), así como perturbaciones en ritmos ultradianos (diferentes fases del sueño). El estudio de la cronopatología de la EA ha sido orientado en busca de una relación bidireccional, en la que puede comportarse bien como causa o como consecuencia, lo que ha permitido revelar nuevas dianas terapéuticas capaces de retrasar la progresión de esta enfermedad. El objetivo de este artículo consiste en describir, a través de una revisión integral de la literatura médica, los trastornos de los ritmos biológicos en la EA enfocada en aportar las bases fisiopatológicas y en ratificar la correlación bidireccional existente.
Abstract
Biological clocks are autonomous anticipatory oscillators that plays a critical role in organizing and processing information from the genome to entire organisms. This complex and hierarchical organization determines that chronic alteration of circadian rhythms is an important risk factor for a variety of diseases, including neurodegenerative pathologies. Alzheimer's disease (AD) represents the most prevalent neurodegenerative disorder in our current society and has long been associated with alterations in circadian rhythms (sleep/wake cycles, variations in the amplitude of the release cycle of melatonin, cortisol, glucose, and insulin), as well as disturbances in ultradian rhythms (different phases of sleep). The study of the chronopathology of AD has been oriented in search of a bidirectional relationship, in which it can behave either as a cause or as a consequence, which has allowed us to reveal new therapeutic targets capable of delaying the progression of this entity. The objective of this article is to describe, through a comprehensive review of the published medical literature, the disorders of biological rhythms in AD focused on providing the pathophysiological bases and ratifying the existing bidirectional correlation.
Keywords: Alzheimer's disease; neurodegenerative pathologies; biological clocks; biological rhythms; ultradian rhythms.
Palabras clave
Referencias
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M. Ontogeny of the circadian system: a multiscale process through-out development. Trends Neurosci. 2024 Jan;47(1):36-46.
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological im-portance of circadian rhythms. Nat Rev Mol Cell Biol. 2020 Feb;21(2):67-84.
Jagielo AD, Benedict C, Spiegel D. Circadi-an, hormonal, and sleep rhythms: effects on cancer progression implications for treatment. Front Oncol. 2023 Sep 7;13:1269378.
Peng X, Fan R, Xie L, Shi X, Dong K, Zhang S, Tao J, Xu W, Ma D, Chen J, Yang Y. A Grow-ing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci. 2022 Jan 3;23(1):504.
Kawai M. Disruption of the circadian rhythms and its relationship with pedi-atric obesity. Pediatr Int. 2022 Jan;64(1):e14992.
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron. 2024 Jan 3;112(1):25-40.
Fifel K, Videnovic A. Circadian alterations in patients with neurodegenerative dis-eases: Neuropathological basis of under-lying network mechanisms. Neurobiol Dis. 2020 Oct;144:105029.
Alzheimer’s Association. 2023 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2023;19(4).
Song, J. Pineal gland dysfunction in Alz-heimer’s disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegenera-tion.2019; 14, 28
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: im-pact on neurological disorders and stress responses. Mol Brain. 2023 Jan 12;16(1):5.
Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer's disease progression. Curr Neuropharmacol. 2010 Sep;8(3):218-27.
Rigat L, Ouk K, Kramer A, Priller J. Dys-function of circadian and sleep rhythms in the early stages of Alzheimer's dis-ease. Acta Physiol (Oxf). 2023 Jun;238(2):e13970.
Van Someren EJ, Riemersma RF, Swaab DF. Functional plasticity of the circadian timing system in old age: light exposure. Prog Brain Res. 2002;138:205-31.
Vasey C, McBride J, Penta K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients. 2021 Sep 30;13(10):3480.
Chauhan S, Barbanta A, Ettinger U, Ku-mari V. Pineal Abnormalities in Psycho-sis and Mood Disorders: A Systematic Review. Brain Sci. 2023 May 20;13(5):827.
Belay DG, Worku MG. Prevalence of pineal gland calcification: systematic review and meta-analysis.Syst Rev. 2023 Mar 6;12(1):32.
Jalali N, Firouzabadi MD, Mirshekar A, Khalili P, Ravangard AR, Ahmadi J, Pooya Saeed A, Jalali Z. Cross-sectional analysis of potential risk factors of the pineal gland calcification. BMC Endocr Dis-ord.2023 Feb 28;23(1):49.
Bojkowski CJ, Arendt J. Factors influenc-ing urinary 6-sulphatoxymelatonin, a major melatonin metabolite, in normal human subjects.Clin Endocrino l (Oxf). 1990 Oct;33(4):435-44.
Wu YH, Swaab DF. The human pineal gland and melatonin in aging and Alz-heimer's disease. J Pineal Res. 2005 Apr;38(3):145-52.
Bumb JM, Schilling C, Enning F, Haddad L, Paul F, Lederbogen F, Deuschle M, Schredl M, Nolte I. Pineal gland volume in primary insomnia and healthy con-trols: a magnetic resonance imaging study. J Sleep Res. 2014 Jun;23(3):274-80.
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neu-rosci. 2018 Aug;19(8):453-469.
Hastings MH, Smyllie NJ, Patton AP. Mo-lecular-genetic Manipulation of the Su-prachiasmatic Nucleus Circadian Clock. J Mol Biol.2020 May 29;432(12):3639-3660.
Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian Rhythms and Astrocytes: The Good, the Bad, and the Ugly. Annu Rev Neurosci. 2023 Jul 10;46:123-143.
Servière J, Lavialle M. Astrocytes in the mammalian circadian clock: putative roles. Prog Brain Res. 1996;111:57-73.
Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørs-bråten KS, Chambers AR, Sprengel R, Vervaeke K, Tang W, Enger R, Nagelhus EA. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regu-lation of slow wave sleep. Nat Commun. 2020 Jul 6;11(1):3240.
Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical as-trocytes independently regulate sleep depth and duration via separate GPCR pathways. Elife. 2021 Mar 17;10:e63329.
Liu RY, Zhou JN, Hoogendijk WJ, van Heerikhuize J, Kamphorst W, Unmehopa UA, Hofman MA, Swaab DF. Decreased vasopressin gene expression in the bio-logical clock of Alzheimer disease pa-tients with and without depression. J Neuropathol Exp Neurol. 2000 Apr;59(4):314-22.
Wu YH, Fischer DF, Kalsbeek A, Garidou-Boof ML, van der Vliet J, vanHeijningen C, Liu RY, Zhou JN, Swaab DF. Pineal clock gene oscillationis disturbed in Alzhei-mer's disease, due to functional discon-nection from the "masterclock". FASEB J. 2006; 20, 1874–1876.
Zhou JN, Hofman MA, Swaab DF. VIP neu-rons in the human SCN in relation to sex, age, and Alzheimer's disease. Neuro-biol Aging. 1995 Jul-Aug;16(4):571-6.
Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, Kowall N, Satlin A. Dorsomedial SCN neuronal subpopulations subserve different func-tions in human dementia. Brain. 2008 Jun;131(Pt 6):1609-17.
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 al-ters daily locomotor activity and cogni-tive functions via GABA signalling. Nat Commun. 2017 Feb 10;8:14336.
Brancaccio M, Wolfes AC, Ness N. Astro-cyte Circadian Timekeeping in Brain Health and Neurodegeneration. Adv Exp Med Biol. 2021;1344:87-110.
Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, Nadara-jah CJ, Xiong DD, Guo C, Cammack AJ, Eli-as JA, Zhang J, Cruchaga C, Musiek ES. Chi3l1/YKL-40 is controlled by the as-trocyte circadian clock and regulates neuroinflammation and Alzheimer's dis-ease pathogenesis. Sci Transl Med. 2020 Dec 16;12(574):eaax3519.
McKee CA, Lee J, Cai Y, Saito T, Saido T, Musiek ES. Astrocytes deficient in circa-dian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque bur-den. Sci. Rep. 2022. 12:1796.
Kress GJ, Liao F, Dimitry J, Cedeno MR, FitzGerald GA, Holtzman DM, Musiek ES. Regulation of amyloid-β dynamics and pathology by the circadian clock. J Exp Med. 2018 Apr 2;215(4):1059-1068.
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, Sm F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells. 2022 Dec 17;11(24):4111.
Anderson G. A More Holistic Perspective of Alzheimer's Disease: Roles of Gut Mi-crobiome, Adipocytes, HPA Axis, Mela-tonergic Pathway and Astrocyte Mito-chondria in the Emergence of Autoim-munity. Front Biosci (Landmark Ed). 2023 Dec 28;28(12):355.
Anderson G. Why do anti-amyloid beta antibodies not work? Time to reconcep-tualize dementia pathophysiology by in-corporating astrocyte melatonergic pathway desynchronization from amy-loid-beta production. Revista Brasileira de Psiquiatria. 2023; 45: 89–92.
Ahmad SB, Ali A, Bilal M, Rashid SM, Wani AB, Bhat RR, Rehman MU. Melatonin and Health: Insights of Melatonin Action, Bi-ological Functions, and Associated Dis-orders. Cell Mol Neurobiol. 2023 Aug;43(6):2437-2458.
Feng Y, Jiang X, Liu W, Lu H. The location, physiology, pathology of hippocampus Melatonin MT2 receptor and MT2-selective modulators. Eur J Med Chem. 2023 Dec 15;262:115888.
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol. 2021 Aug;116:108-124.
Roy J, Tsui KC, Ng J, Fung ML, Lim LW. Regulation of Melatonin and Neuro-transmission in Alzheimer's Disease. Int J Mol Sci. 2021 Jun 25;22(13):6841.
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ. Alzheimer's disease: patho-logical mechanisms and the beneficial role of melatonin. J Pineal Res. 2012 Mar;52(2):167-202.
Andrade MK, Souza LC, Azevedo EM, Bail EL, Zanata SM, Andreatini R, Vital MABF. Melatonin reduces β-amyloid accumula-tion and improves short-term memory in streptozotocin-induced sporadic Alz-heimer's disease model. IBRO Neurosci Rep. 2023 Jan 26;14:264-272.
Sayas CL, Ávila J. GSK-3 and Tau: A Key Duet in Alzheimer's Disease. Cells. 2021 Mar 24;10(4):721.
Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One. 2010;5(1):e8561. 107.
Kon N, Sugiyama Y, Yoshitane H, Ka-meshita I, Fukada Y. Cell-based inhibitor screening identifies multiple protein ki-nases important for circadian clock os-cillations. Commun Integr Biol. 2015;8(4):e982405. 109.
Hampel H, Mesulam MM, Cuello AC, Far-low MR, Giacobini E, Grossberg GT, Kha-chaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholin-ergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018 Jul 1;141(7):1917-1933.
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Patho-physiology and Treatment of Alzheimer's Disease. Int J Mol Sci. 2023 May 22;24(10):9067.
Zhu H, Gao W, Jiang H, Jin QH, Shi YF, Tsim KW, Zhang XJ. Regulation of acetyl-cholinesterase expression by calcium signaling during calcium ionophore A23187- and thapsigargin-induced apop-tosis. Int J Biochem Cell Biol. 2007;39(1):93-108.
Arnaudeau, S., Frieden, M., Nakamura, K., Castelbou, C., Michalak, M., y Demaurex, N. Calreticulin Differentially Modulates Calcium Uptake and Release in the En-doplasmic Reticulum and Mitochondria. Journal of Biological Chemis-try.2002,277(48):46696–46705.
Das A, Belagodu A, Reiter RJ, Ray SK, Ban-ik NL. Cytoprotective effects of melato-nin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res. 2008 Sep;45(2):117-24.
Lahair MM, Howe CJ, Rodriguez-Mora O, McCubrey JA, Franklin RA. Molecular pathways leading to oxidative stress-induced phosphorylation of Akt. Antiox-id Redox Signal. 2006 Sep-Oct;8(9-10):1749-56.
Ikram M, Park HY, Ali T, Kim MO. Melato-nin as a Potential Regulator of Oxidative Stress, and Neuroinflammation: Mecha-nisms and Implications for the Man-agement of Brain Injury-Induced Neuro-degeneration. J Inflamm Res. 2021 Nov 27;14:6251-6264.
Martín M, Macías M, Escames G, León J, Acuña-Castroviejo D. Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. 2000 Sep;14(12):1677-9.
Won E, Na KS, Kim YK. Associations be-tween Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci. 2021 Dec 28;23(1):305.
Kaur C, Ling EA. Effects of melatonin on macrophages/microglia in postnatal rat brain. J Pineal Res. 1999 Apr;26(3):158-68.
Lissoni P, Marelli O, Mauri R, Resentini M, Franco P, Esposti D, Esposti G, Fraschini F, Halberg F, Sothern RB, et al. Ultradian chronomodulation by melato-nin of a Placebo effect upon human kill-er cell activity. Chronobiologia. 1986 Oct-Dec;13(4):339-43.
Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, Rafii-El-Idrissi M, Sanchez-Margalet V, Goberna R, Guerrero JM. Mel-atonin enhances IL-2, IL-6, and IFN-gamma production by human circulat-ing CD4+ cells: a possible nuclear recep-tor-mediated mechanism involving T helper type 1 lymphocytes and mono-cytes. J Immunol. 1997 Jul 15;159(2):574-81.
Lin XJ, Mei GP, Liu J, Li YL, Zuo D, Liu SJ, Zhao TB, Lin MT. Therapeutic effects of melatonin on heatstroke-induced mul-tiple organ dysfunction syndrome in rats. J Pineal Res. 2011 May;50(4):436-44.
Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velázquez M, Martínez-Barboza G, Acosta-Martínez JP, Ortiz GG. Orally administered melatonin reduces oxida-tive stress and proinflammatory cyto-kines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res. 2003 Sep;35(2):80-4.
Liu RY, Zhou JN, van Heerikhuize J, Hof-man MA, Swaab DF. Decreased melatonin levels in postmortem cerebrospinal flu-id in relation to aging, Alzheimer's dis-ease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab. 1999 Jan;84(1):323-7.
Long JM, Holtzman DM. Alzheimer Dis-ease: An Update on Pathobiology and Treatment Strategies. Cell. 2019;179(2):312-339.
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neu-rogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol. 2023;21(5):1273-1298.
Menegardo CS, Friggi FA, Scardini JB, Rossi TS, Vieira TDS, Tieppo A, Morelato RL. Sundown syndrome in patients with Alzheimer's disease dementia. Dement Neuropsychol. 2019 Oct-Dec;13(4):469-474.
Wu, Y.H., Swaab, D.F. Disturbance and strategies for reactivation of the circadi-an rhythm system in aging and Alzhei-mer's disease. Sleep Med. 2007.8, 623–636.
Duncan, M.J. Interacting influences of aging and Alzheimer's disease on circa-dian rhythms. Eur. J. Neurosci. 2020. 51, 310–325.
Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzhei-mer's disease: role of amyloid, tau, and other factors. Neuropsychopharmacolo-gy. 2020 Jan;45(1):104-120.
Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Okhravi HR, Vitiello MV, Sanford LD, Tang X. Sleep in Alzheimer's disease: a sys-tematic review and meta-analysis of polysomnographic findings. Transl Psy-chiatry. 2022.Apr 1;12(1):136.
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis. 2024;97(1):31-74.
Mérida-Raigón M, Plaza-Carmona M. Alteraciones del sueño y demencia en población mayor. Revisión sistemática. Gerokomos. 2023;34(2): 126-133.
Fernández-Arcos A, Morenas-Rodríguez E, Santamaria J, Sánchez-Valle R, Lladó A, Gaig C, Lleó A, Iranzo A. Clinical and vid-eo-polysomnographic analysis of rapid eye movement sleep behavior disorder and other sleep disturbances in demen-tia with Lewy bodies. Sleep. 2019 Jul 8;42(7):zsz086.
Ju YE, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, Morris JC, Holtzman DM. Sleep quality and preclini-cal Alzheimer disease. JAMA Neurol. 2013 May;70(5):587-93.
Lucey BP, McCullough A, Landsness EC, Toedebusch CD, McLeland JS, Zaza AM, Fagan AM, McCue L, Xiong C, Morris JC, Benzinger TLS, Holtzman DM. Reduced non-rapid eye movement sleep is asso-ciated with tau pathology in early Alz-heimer's disease. Sci Transl Med. 2019. Jan 9;11(474):eaau6550.
Winer JR, Mander BA, Kumar S, Reed M, Baker SL, Jagust WJ, Walker MP. Sleep Dis-turbance Forecasts β-Amyloid Accumu-lation across Subsequent Years. Curr Bi-ol. 2020. Nov 2;30(21):4291-4298.e3.
Bubu OM, Andrade AG, Umasabor-Bubu OQ, Hogan MM, Turner AD, de Leon MJ, Ogedegbe G, Ayappa I, Jean-Louis G G, Jackson ML, Varga AW, Osorio RS. Ob-structive sleep apnea, cognition and Alzheimer's disease: A systematic review integrating three decades of multidisci-plinary research. Sleep Med Rev. 2020. Apr;50:101250.
Liguori C, Maestri M, Spanetta M, Placidi F, Bonanni E, Mercuri NB, Guarnieri B. Sleep-disordered breathing and the risk of Alzheimer's disease. Sleep Med Rev. 2021. Feb;55:101375.
Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA. Effect of 1 night of total sleep deprivation on cerebro-spinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 2014 Aug;71(8):971-7.
Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G, Fagan AM, Mignot E, Zempel JM, Claassen JAHR, Holtzman DM. Slow wave sleep disruption increas-es cerebrospinal fluid amyloid-β levels. Brain. 2017 Aug 1;140(8):2104-2111.
Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, Schwartz S, Borenstein AR, Wu Y, Morgan D, Anderson WM. Sleep, Cognitive im-pairment, and Alzheimer's disease: A Systematic Review and Meta-Analysis. Sleep. 2017 Jan 1;40(1).
Carlson EJ, Wilckens KA, Wheeler ME. The Interactive Role of Sleep and Circadian Rhythms in Episodic Memory in Older Adults. J Gerontol A Biol Sci Med Sci. 2023 Oct 9;78(10):1844-1852.
Borbély AA, Daan S, Wirz-Justice A, Debo-er T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016 Apr;25(2):131-43.
Pimentel Araujo MA. Factores Laborales Asociados a Sobrepeso y Obesidad en Adultos Jóvenes. Rev Asoc Esp Espec Med Trab 2021; 30(3): 318-327.
Lim AS, Ellison BA, Wang JL, Yu L, Schneider JA, Buchman AS, Bennett DA, Saper CB. Sleep is related to neuron numbers in the ventrolateral preop-tic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain. 2014 Oct;137(Pt 10):2847-61.
Van Erum J, Van Dam D, Deyn PP. Alz-heimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci Biobehav Rev. 2019;105:80.
Lucey BP, Hicks TJ, McLeland JS, Toede-busch CD, Boyd J, Elbert DL, Patterson BW, Baty J, Morris JC, Ovod V, Mawuenyega KG, Bateman RJ. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol. 2018. Jan;83(1):197-204.
Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, Finn MB, Manis M, Geerling JC, Fuller PM, Lucey BP, Holtzman DM. The sleep-wake cycle regu-lates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019. Feb 22;363(6429):880-884.
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020 Oct 2;370(6512):50-56.
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373-7.
Bero AW, Yan P, Roh JH, Cirrito JR, Stew-art FR, Raichle ME, Lee JM, Holtzman DM. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci. 2011 Jun;14(6):750-6.
Olsson B, Portelius E, Cullen NC, Sande-lius Å, Zetterberg H, Andreasson U, Höglund K, Irwin DJ, Grossman M, Wein-traub D, Chen-Plotkin A, Wolk D, McCluskey L, Elman L, Shaw LM, Toledo JB, McBride J, Hernandez-Con P, Lee VM, Trojanowski JQ, Blennow K. Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol. 2019 Mar 1;76(3):318-325.
Zhou, J.N., Liu, R.Y., Kamphorst, W., Hof-man, M.A., Swaab, D.F. Early Neuropatho-logical Alzheimer's Changes in Aged In-dividuals Are Accompanied by Decreased Cerebrospinal Fluid Melatonin Levels. J. Pineal Res. 2003. 35, 125-130.
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Mel-anopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci. 2019 Jun 28;20(13):3164.
Esquiva G, Lax P, Pérez-Santonja JJ, Gar-cía-Fernández JM, Cuenca N. Loss of Mel-anopsin-Expressing Ganglion Cell Sub-types and Dendritic Degeneration in the Aging Human Retina. Front Aging Neuro-sci. 2017 Apr 4;9:79.
Hinton DR, Sadun AA, Blanks JC, Miller CA. Optic-nerve degeneration in Alzhei-mer's disease. N Engl J Med. 1986 Aug 21;315(8):485-7.
Blanks JC, Hinton DR, Sadun AA, Miller CA. Retinal ganglion cell degeneration in Alzheimer's disease. Brain research. 1989 Nov 6;501(2):364-72.
Williams PA, Thirgood RA, Oliphant H, Frizzati A, Littlewood E, Votruba M, Good MA, Williams J, Morgan JE. Retinal gangli-on cell dendritic degeneration in a mouse model of Alzheimer's disease. Neurobiology of aging. 2013 Jul 1;34(7):1799-806.
Koronyo-Hamaoui M, Koronyo Y, Ljubi-mov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL. Identification of amyloid plaques in retinas from Alzhei-mer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011 Jan 1;54:S204-17.
Parisi V. Correlation between morpho-logical and functional retinal impair-ment in patients affected by ocular hy-pertension, glaucoma, demyelinating op-tic neuritis and Alzheimer’s disease. In-Seminars in ophthalmology. 2003 Jan 1,18(2)50-57.
Ahmad MH, Fatima M, Mondal AC. Role of Hypothalamic-Pituitary-Adrenal Axis, Hypothalamic-Pituitary-Gonadal Axis and Insulin Signaling in the Pathophysi-ology of Alzheimer's Disease. Neuropsy-chobiology. 2019;77(4):197-205.
Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD. Intact circadian rhythm de-spite cortisol hypersecretion in Alzhei-mer's disease: A meta-analysis. Psycho-neuroendocrinology. 2021 Oct;132:105367.
Lopez OL, McDade E, Riverol M, Becker JT. Evolution of the diagnostic criteria for degenerative and cognitive disorders. Curr Opin Neurol. 2011 Dec;24(6):532-41.
Zhao W, Wang X, Yin C, He M, Li S, Han Y. Trajectories of the Hippocampal Sub-fields Atrophy in the Alzheimer's Dis-ease: A Structural Imaging Study. Front Neuroinform. 2019;13:13.
Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12(2):118-134.
Phan TX, Malkani RG. Sleep and circadi-an rhythm disruption and stress inter-sect in Alzheimer's disease. Neurobiol Stress. 2018 Oct 17;10:100133.
Pomara N, Stanley M, Rhiew HB, Bagne CA, Deptula D, Galloway MP, Tanimoto K, Verebey K, Tamminga CA. Loss of the cortisol response to naltrexone in Alz-heimer's disease. Biol Psychiatry. 1988 Apr 1;23(7):726-33.
Murialdo G, Barreca A, Nobili F, Rollero A, Timossi G, Gianelli MV, Copello F, Ro-driguez G, Polleri A. Relationships be-tween cortisol, dehydroepiandrosterone sulphate and insulin-like growth factor-I system in dementia. J Endocrinol Invest. 2001 Mar;24(3):139-46.
Carroll KF, Nestel PJ. Diurnal variation in glucose tolerance and in insulin se-cretion in man. Diabetes. 1973;22(5):333-348.
Ruiter M, La Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM. The daily rhythm in plasma glucagon con-centrations in the rat is modulated by the biological clock and by feeding be-havior. Diabetes. 2003;52(7):1709-1715.
Gil-Lozano M, Mingomataj EL, Wu WK, Ridout SA, Brubaker PL. Circadian secre-tion of the intestinal hormone GLP-1 by the rodent L cell. Diabetes. 2014;63(11):3674-3685.
Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL, Gangl MR, Mair WB, Lee CH. Hepatic Bmal1 Regulates Rhyth-mic Mitochondrial Dynamics and Pro-motes Metabolic Fitness. Cell Metab. 2015 Oct 6;22(4):709-20.
Lee J, Kim MS, Li R, Liu VY, Fu L, Moore DD, Ma K, Yechoor VK. Loss of Bmal1 leads to uncoupling and impaired glu-cose-stimulated insulin secretion in β-cells. Islets. 2011 Nov-Dec;3(6):381-8.
Versace S, Pellitteri G, Sperotto R, Tar-taglia S, Da Porto A, Catena C, Gigli GL, Cavarape A, Valente M. A State-of-Art Re-view of the Vicious Circle of Sleep Disor-ders, Diabetes and Neurodegeneration Involving Metabolism and Microbiota Al-terations. Int J Mol Sci. 2023 Jun 25;24(13):10615.
Janoutová J, Machaczka O, Zatloukalová A, Janout V. Is Alzheimer's disease a type 3 diabetes? A review. Cent Eur J Public Health. 2022 Sep;30(3):139-143.
Biessels GJ, Kamal A, Ramakers GM, Ur-ban IJ, Spruijt BM, Erkelens DW, Gispen WH. Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes. 1996 Sep;45(9):1259-66.
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL Jr, Darley-Usmar V, Zhang J. Targeting whole body metabo-lism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B. 2022 Feb;12(2):511-531.
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabo-lism and Alzheimer disease. Nat. Rev. Neurosci. 2019;20:148–160. doi: 10.1038/s41583-019-0132-6.
Yu JH, Han K, Park S, Cho H, Lee DY, Kim JW, Seo JA, Kim SG, Baik SH, Park YG, Choi KM, Kim SM, Kim NH. Incidence and Risk Factors for Dementia in Type 2 Diabetes Mellitus: A Nationwide Population-Based Study in Korea. Diabetes Metab J. 2020 Feb;44(1):113-124.
Hayden MR. Type 2 Diabetes Mellitus Increases The Risk of Late-Onset Alzhei-mer's Disease: Ultrastructural Remodel-ing of the Neurovascular Unit and Dia-betic Gliopathy. Brain Sci. 2019 Sep 29;9(10):262.
Sędzikowska A, Szablewski L. Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci. 2021 Sep 15;22(18):9987.
Yaribeygi H, Farrokhi FR, Butler AE, Sa-hebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019 Jun;234(6):8152-8161.
Kumar V, Kim SH, Bishayee K. Dysfunc-tional Glucose Metabolism in Alzhei-mer's Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci. 2022 Aug 23;23(17):9540.
Leclerc M, Bourassa P, Tremblay C, Ca-ron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin recep-tors are defective in Alzheimer's disease. Brain. 2023 Jan 5;146(1):75-90.
Wan Y, Gao W, Zhou K, Liu X, Jiang W, Xue R, Wu W. Role of IGF-1 in neuroin-flammation and cognition deficits in-duced by sleep deprivation. Neurosci Lett. 2022 Apr 17;776:136575.
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging. 2006 Feb;27(2):190-8.
Zhao N, Liu CC, Van Ingelgom AJ, Mar-tens YA, Linares C, Knight JA, Painter MM, Sullivan PM, Bu G. Apolipoprotein E4 Im-pairs Neuronal Insulin Signaling by Trapping Insulin Receptor in the Endo-somes. Neuron. 2017 Sep 27;96(1):115-129.e5.
De la Monte SM. Insulin resistance and Alzheimer's disease. BMB Rep. 2009 Aug 31;42(8):475-81.
Li Y, Shao L, Mou Y, Zhang Y, Ping Y. Sleep, circadian rhythm and gut micro-biota: alterations in Alzheimer's disease and their potential links in the patho-genesis. Gut Microbes. 2021 Jan-Dec;13(1):1957407.
Liang X, Bushman FD, FitzGerald GA. Time in motion: the molecular clock meets the microbiome. Cell. 2014 Oct 23;159(3):469-70.
DOI: https://doi.org/10.25009/eb.v15i37.2629
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.