El vínculo entre calidad de sueño y consumo de drogas en adolescentes

Rodolfo Espinoza-Abad, Fernando Bravo-González, Mario Eduardo Acosta-Hernández, Fabio García-García

Resumen


El sueño es un ritmo biológico que se presenta cada 24 horas y alterna con la fase de vigilia. Las funciones atribuidas al sueño son diversas, pero destaca su papel en la consolidación de la memoria, en la regulación del metabolismo y en la limpieza del cerebro de desechos tóxicos. Estudios recientes muestran que el sueño tiene un papel neuroprotector al reducir el riesgo de desarrollar conductas nocivas como la ludopatía. Particularmente, la reducción del tiempo de sueño se correlaciona con mayor riesgo de consumo de sustancias psicoactivas. Este riesgo es relevante en los adolescentes por dos razones: el sistema cerebral responsable de la toma de decisiones no alcanza su madurez estructural y funcional y son un grupo etario donde la privación de sueño es recurrente. En este manuscrito se llevó a cabo una revisión narrativa de 48 artículos publicados en los últimos diez años con el objetivo de conocer cómo la reducción recurrente del tiempo de sueño durante la adolescencia puede incrementar la probabilidad de consumo de sustancias psicoactivas. Con los estudios revisados se propone un modelo hipotético que muestra la relación potencial entre la reducción de horas de sueño, la sensibilización del sistema cerebral de la recompensa y el consumo de sustancias psicoactivas.

Abstract

Sleep is a biological rhythm that occurs every 24 hours and alternates with the waking phase. The functions of sleep are diverse, but its role stands out in consolidating memory, regulating metabolism, and cleaning the brain of toxic waste. Recent studies show that sleep has a neuroprotective role by reducing the risk of developing harmful behaviors such as gambling. Particularly, reduced sleep time is correlated with a greater risk of psychoactive substance use. This risk is relevant in adolescents for two reasons: the brain system responsible for decision-making does not reach its structural and functional maturity, and they are an age group where sleep deprivation is recurrent. In this manuscript, a narrative review of 48 articles published in the last ten years was carried out with the objective of knowing how the recurrent reduction in sleep time during adolescence can increase the probability of consumption of psychoactive substances. With the studies reviewed, a hypothetical model is proposed that shows the potential relationship between the reduction in hours of sleep, the sensitization of the brain reward system, and the consumption of psychoactive substances.

Keywords: sleep deprivation; sleep quality; insomnia; teenagers; orexin; drug abuse.


Palabras clave


Privación de sueño; calidad de sueño; insomnio; adolescente; orexina; abuso de sustancias.

Texto completo:

PDF HTML

Referencias


Lakhiani R, Shanavas S, Melnattur K. Comparative biology of sleep in diverse animals. J Exp Biol 2023; 226 (14). https://doi.org/10.1242/jeb.245677

Baranwal N, Yu PK, Siegel NS. Sleep physiology, pathophysiology, and sleep hygiene. Prog Cardiovasc Dis 2023 77: 59-69. https://doi.org/10.1016/j.pcad.2023.02.005

Kecklund G, Di Milia L, Axelsson J, Lowden A, Åkerstedt T. 20th International Symposium on Shiftwork and Working Time: Biological Mechanisms, Recovery, and Risk Management in the 24-h Society. Chronobiol Int 2012 29(5): 531-536. https://doi.org/10.3109/07420528.2012.678673

Crowley SJ, Wolfson AR, Tarokh L, Carskadon MA. An update on adolescent sleep: New evidence informing the perfect storm model. J Adolesc 2018 67(1): 55-65. https://doi.org/10.1016/j.adolescence.2018.06.001

Carissimi A, Dresch F, Martins AC, Levandovski RM, Adan A, Natale V, Martoni M, Hidalgo MP. The influence of school time on sleep patterns of children and adolescents. Sleep Med 2016 19: 33-39. https://doi.org/10.1016/j.sleep.2015.09.024

Phillips AJK, Clerx WM, O’Brien CS, Sano A, Barger LK, Picard RW, Lockley SW, Klerman EB, Czeisler CA. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep 2017 7(1). https://doi.org/10.1038/s41598-017-03171-4

Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front Neurol Neurosci 2021: 117-127. https://doi.org/10.1159/000514965

Thompson SR, Ackermann U, Horner RL. Sleep as a teaching tool for integrating respiratory physiology and motor control. Adv Physiol Educ 2001 25(2): 29-44. https://doi.org/10.1152/advances.2001.25.2.29

Vazsonyi AT, Liu D, Javakhishvili M, Beier JJ, Blatny M. Sleepless: The developmental significance of sleep quality and quantity among adolescents. Dev Psychol 2021 57(6): 1018-1024. https://doi.org/10.1037/dev0001192

Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev 2016 28: 46-54. https://doi.org/10.1016/j.smrv.2015.08.005

García-García F, García F, Márquez G. (2015) Capítulo 6: Sueño y vigilia. En GA Coria-Avila (Editor), Neurofisiología de la conducta (pp. 194-245). Universidad Veracruzana.

Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010 68(6): 1023-1042. https://doi.org/10.1016/j.neuron.2010.11.032

Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017 93(4): 747-765. https://doi.org/10.1016/j.neuron.2017.01.014

Hägele C, Schlagenhauf F, Rapp M, Sterzer P, Beck A, Bermpohl F, Stoy M, Ströhle A, Wittchen H, Dolan RJ, Heinz A. Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacol 2014 232(2): 331-341. https://doi.org/10.1007/s00213-014-3662-7

Galaj E, Ranaldi R. Neurobiology of reward-related learning. Neurosci Biobehav Rev 2021 124: 224-234. https://doi.org/10.1016/j.neubiorev.2021.02.007

López-Muciño LA, García-García F, Cueto-Escobedo J, Acosta-Hernández M, Venebra-Muñoz A, Rodríguez-Alba JC. Sleep loss and addiction. Neurosci Biobehav Rev 2022 141. https://doi.org/10.1016/j.neubiorev.2022.104832

Gardner EL. Addiction and Brain Reward and Antireward Pathways. Adv Psychosom Med 2011: 22-60. https://doi.org/10.1159/000324065

Peyron C, Tighe DK, Van Den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems. J Neurosci 1998 18(23). https://doi.org/10.1523/jneurosci.18-23-09996.1998

Berridge KC, Robinson TE. Parsing reward. Trends Neurosci 2003 26(9): 507-513. https://doi.org/10.1016/s0166-2236(03)00233-9

Goldstein RZ, Volkow ND. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex. Am J Psychiatry 2002 159(10): 1642-1652. https://doi.org/10.1176/appi.ajp.159.10.1642

Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla A. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021 157(5): 1450-1472. https://doi.org/10.1111/jnc.15297

Wise RA. Dopamine and reward: The anhedonia hypothesis 30 years on. Neurotox Res 2008 14(3): 169-183. https://doi.org/10.1007/bf03033808

Volkow ND, Michaelides M, Baler R. The Neuroscience of Drug Reward and Addiction. Physiol Rev 2019 99(4): 2115-2140. https://doi.org/10.1152/physrev.00014.2018

Telzer EH. Dopaminergic reward sensitivity can promote adolescent health: A new perspective on the mechanism of ventral striatum activation. Dev Cogn Neurosci 2016 17: 57-67. https://doi.org/10.1016/j.dcn.2015.10.010

Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacol 2004 47: 227-241. https://doi.org/10.1016/j.neuropharm.2004.06.032

Kalivas PW, Volkow ND. The Neural Basis of Addiction: A Pathology of Motivation and Choice. Am J Psychiatry 2005 162(8): 1403-1413. https://doi.org/10.1176/appi.ajp.162.8.1403

Sellings LHL, Clarke PBS. Segregation of Amphetamine Reward and Locomotor Stimulation between Nucleus Accumbens Medial Shell and Core. J Neurosci 2003 23(15): 6295-6303. https://doi.org/10.1523/jneurosci.23-15-06295.2003

Tang Y, Posner MI, Rothbart MK, Volkow ND. Circuitry of self-control and its role in reducing addiction. Trends Cogn Sci 2015 19(8): 439-444. https://doi.org/10.1016/j.tics.2015.06.007

Watanabe M. Emotional and Motivational Functions of the Prefrontal Cortex. Brain Nerve 2016 68(11): 1291-1299. https://doi.org/10.11477/mf.1416200593

Klenowski PM. Emerging role for the medial prefrontal cortex in alcohol-seeking behaviors. Addictive Behaviors 2018, 77: 102-106. https://doi.org/10.1016/j.addbeh.2017.09.024

Peters S, Peper JS, Van Duijvenvoorde AC, Braams BR, Crone EA. Amygdala–orbitofrontal connectivity predicts alcohol use two years later: a longitudinal neuroimaging study on alcohol use in adolescence. Developmental Science 2016 20(4). https://doi.org/10.1111/desc.12448

Morales AM, Jones SA, Ehlers A, Lavine JB, Nagel BJ. Ventral striatal response during decision making involving risk and reward is associated with future binge drinking in adolescents. Neuropsychopharmacol 2018 43(9): 1884-1890. https://doi.org/10.1038/s41386-018-0087-8

Jiang Y, Liu B, Wu C, Gao X, Lu Y, Lian Y, Liu J. Dopamine Receptor D2 Gene (DRD2) Polymorphisms, Job Stress, and Their Interaction on Sleep Dysfunction. Int J Environ Res Public Health 2020 17(21): 8174. https://doi.org/10.3390/ijerph17218174

Paruthi S, Brooks LJ, D’Ambrosio C, Hall WA, Kotagal S, Lloyd RM, Malow BA, Maski K, Nichols C, Quan SF, Rosen CL, Troester MM, Wise MS. Consensus Statement of the American Academy of Sleep Medicine on the Recommended Amount of Sleep for Healthy Children: Methodology and Discussion. J Clin Sleep Med 2016 12(11): 1549-1561. https://doi.org/10.5664/jcsm.6288

Logan RW, Hasler BP, Forbes EE, Franzen PL, Torregrossa MM, Huang YH, Buysse DJ, Clark DB, McClung CA. Impact of Sleep and Circadian Rhythms on Addiction Vulnerability in Adolescents. Biol Psychiatry 2018 83(12): 987-996. https://doi.org/10.1016/j.biopsych.2017.11.035

Gariepy G, Danna S, Gobina I, Rasmussen M, De Matos MG, Tynjälä J, Janssen I, Kalman M, Villeruša A, Husarova D, Brooks F, Elgar FJ, Klavina-Makrecka S, Šmigelskas K, Gaspar T, Schnohr C. How Are Adolescents Sleeping? Adolescent Sleep Patterns and Sociodemographic Differences in 24 European and North American Countries. J Adolesc Health 2020 66(6) 81-88. https://doi.org/10.1016/j.jadohealth.2020.03.013

Hartstein LE, LeBourgeois MK, Durniak MT, Najjar RP. Differences in the Pupillary Responses to Evening Light between Children and Adolescents. bioRxiv 2023. https://doi.org/10.1101/2023.08.09.552691

Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018 39(6): 990-1028. https://doi.org/10.1210/er.2018-00084

Selmaoui B, Touitou Y. Association Between Mobile Phone Radiation Exposure and the Secretion of Melatonin and Cortisol, Two Markers of the Circadian System: A Review. Bioelectromagnetics 2020 42(1): 5-17. https://doi.org/10.1002/bem.22310

Nagare R, Rea MS, Plitnick B, Figueiro MG. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure. J Biol Rhythms 2019 34(2): 178-194. https://doi.org/10.1177/0748730419828056

Figueiro M, Overington D. Self-luminous devices and melatonin suppression in adolescents. Light Res Technol 2016 48(8): 966-975. https://doi.org/10.1177/1477153515584979

Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ Res 2018 164: 149-157. https://doi.org/10.1016/j.envres.2018.01.015

Bartel K, Gradisar M. New Directions in the Link Between Technology Use and Sleep in Young People. Springer eBooks 2016: 69-80. https://doi.org/10.1007/978-3-319-28640-2_4

Pérez-Chada D, Bioch SA, Schönfeld D, Gozal D, Perez-Lloret S. Screen use, sleep duration, daytime somnolence, and academic failure in school-aged adolescents. Plos One 2023 18(2). https://doi.org/10.1371/journal.pone.0281379

Roenneberg T. How can social jetlag affect health? Nat Rev Endocrinol 2023 19(7): 383-384. https://doi.org/10.1038/s41574-023-00851-2

Comas M, Flores AS, Lovato N, Miller CB, Bartlett DJ, Grunstein RR, Chapman J, Gordon CJ. The Relationship between Anxiety, Subjective and Objective Sleep, Chronotype and Circadian Rhythms with Depressive Symptoms in Insomnia Disorder. Brain Sci 2023 13(4). https://doi.org/10.3390/brainsci13040613

Crowley SJ, Wolfson AR, Tarokh L, Carskadon MA. An update on adolescent sleep: New evidence informing the perfect storm model. J Adolesc 2018 67(1): 55-65. https://doi.org/10.1016/j.adolescence.2018.06.001

Phillips AJK, Clerx WM, O’Brien CS, Sano A, Barger LK, Picard RW, Lockley SW, Klerman EB, Czeisler CA. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep 2017 7(1). https://doi.org/10.1038/s41598-017-03171-4

Leger D, Andler R, Richard J, Nguyen‐Thanh V, Collin O, Chennaoui M, Metlaine A. Sleep, substance misuse and addictions: a nationwide observational survey on smoking, alcohol, cannabis and sleep in 12,637 adults. J Sleep Res 2022 31(5). https://doi.org/10.1111/jsr.13553

Hasler BP, Graves JL, Wallace ML, Claudatos S, Franzen PL, Nooner KB, Brown SA, Tapert SF, Baker FC, Clark DB. Self‐reported sleep and circadian characteristics predict alcohol and cannabis use: A longitudinal analysis of the National Consortium on Alcohol and Neurodevelopment in Adolescence Study. Alcoholism: Clin Exp Res 2022 46(5): 848-860. https://doi.org/10.1111/acer.14808

Miller MB, Janssen T, Jackson KM. The Prospective Association Between Sleep and Initiation of Substance Use in Young Adolescents. J Adolesc Health 2017 60(2): 154-160. https://doi.org/10.1016/j.jadohealth.2016.08.019

Ewald VAM, LaLumiere RT. Neural systems mediating the inhibition of cocaine-seeking behaviors. Pharmacol Biochem Behav 2018 174: 53-63. https://doi.org/10.1016/j.pbb.2017.07.006

Sivertsen B, Skogen JC, Jakobsen R, Hysing M. Sleep and use of alcohol and drug in adolescence. A large population-based study of Norwegian adolescents aged 16 to 19 years. Drug Alcohol Depend 2015 149: 180-186. https://doi.org/10.1016/j.drugalcdep.2015.01.045

Nguyen‐Louie TT, Brumback T, Worley MJ, Colrain IM, Matt GE, Squeglia LM, Tapert SF. Effects of sleep on substance use in adolescents: a longitudinal perspective. Addict Biol 2017 23(2): 750-760. https://doi.org/10.1111/adb.12519

Lam T, Ogeil RP, Allsop S, Chikritzhs T, Fischer J, Midford R, Gilmore W, Lenton S, Liang W, Lloyd B, Aiken A, Mattick R, Burns L, Lubman DI. Insomnia and regulation of sleep-wake cycle with drugs among adolescent risky drinkers. Journal of Clinical Sleep Medicine 2018 14(9): 1529-1537. https://doi.org/10.5664/jcsm.7330

Liu Y, Wang R, Gong R, Yu Y, Xu C, Yu X, Chang R, Wang S, Hu F, Xiang M, Cai Y. The trajectories and associations of insomnia symptoms with addictive behaviours in adolescents: A two‐year longitudinal study. J Sleep Res 2023 32(4). https://doi.org/10.1111/jsr.13817

Thannickal TC, John J, Shan L, Swaab DF, Wu M, Ramanathan L, McGregor R, Chew K, Cornford M, Yamanaka A, Inutsuka A, Fronczek R, Lammers GJ, Worley PF, Siegel JM. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci Transl Med 2018 10(447). https://doi.org/10.1126/scitranslmed.aao4953

Huhn AS, Finan PH, Gamaldo CE, Hammond AS, Umbricht A, Bergeria CL, Strain EC, Dunn KE. Suvorexant ameliorated sleep disturbance, opioid withdrawal, and craving during a buprenorphine taper. Sci Transl Med 2022 14(650). https://doi.org/10.1126/scitranslmed.abn8238

Equihua-Bénitez A, García-García F. Healthy Sleep, Orexin System and Addiction. RIIAD 2024, en prensa.




DOI: https://doi.org/10.25009/eb.v15i38.2631

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.