Potencial terapéutico de la granada (Punica granatum) en la epilepsia
Resumen
La epilepsia, que afecta a aproximadamente 65 millones de personas en todo el mundo, representa un desafío significativo en la salud pública, particularmente porque cerca del 30% de los casos son resistentes al tratamiento farmacológico convencional. En este contexto, la búsqueda de nuevas estrategias terapéuticas cobra una relevancia crucial. Entre las principales características de la epilepsia, la hiperexcitabilidad neuronal asociada a las crisis epilépticas genera un aumento significativo en la producción de radicales libres y promueve procesos inflamatorios. Estos factores, en conjunto, subrayan la importancia de desarrollar enfoques terapéuticos que controlen tanto el estrés oxidativo como la inflamación. En este escenario, los agentes antioxidantes y antiinflamatorios destacan por su capacidad para potenciar los efectos neuroprotectores de los tratamientos anticrisis. La granada (Punica granatum) surge como una alternativa innovadora y prometedora, gracias a su composición rica en polifenoles, que le confiere potentes propiedades antioxidantes y antiinflamatorias. Estos compuestos no solo neutralizan radicales libres, sino que también actúan restaurando el equilibrio de neurotransmisores clave para la funcionalidad del sistema nervioso central (SNC). Además, su acción antiinflamatoria amplifica su potencial terapéutico. Por tanto, las propiedades únicas de la granada abren nuevas perspectivas en el tratamiento de la epilepsia, destacándola como una opción terapéutica de gran interés, particularmente para pacientes con resistencia a tratamientos convencionales.
Abstract
Epilepsy, affecting approximately 65 million people worldwide, represents a significant public health challenge, particularly because nearly 30% of cases are resistant to conventional pharmacological treatment. In this context, the search for new therapeutic strategies becomes crucial. Among the main features of epilepsy, neuronal hyperexcitability associated with seizures leads to a significant increase in the production of free radicals and promotes inflammatory processes. These factors collectively highlight the importance of developing therapeutic approaches that address both oxidative stress and inflammation. In this scenario, antioxidant and anti-inflammatory agents stand out for their ability to enhance the neuroprotective effects of anticonvulsant treatments. Pomegranate (Punica granatum) emerges as an innovative and promising alternative, due to its polyphenol-rich composition, which endows it with potent antioxidant and anti-inflammatory properties. These compounds not only neutralize free radicals but also help restore the balance of key neurotransmitters essential for central nervous system (CNS) functionality. Moreover, its anti-inflammatory action further amplifies its therapeutic potential. Therefore, the unique properties of pomegranate open new perspectives in epilepsy treatment, positioning it as a highly interesting therapeutic option, particularly for patients resistant to conventional treatments.
Keywords: epilepsy, Punica granatum; pomegranate; polyphenols; punicic acid; punicalagin.
Palabras clave
Texto completo:
PDFReferencias
Beghi E. The epidemiology of epilepsy. Neuroepidemiology 2019 54(2): 185-191.
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019 393(10172): 689-701.
Milligan TA. Epilepsy: a Clinical Overview. Am J Med 2021 134(7), 840-847.
Falco-Walter J. Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Sem Neurol 2020 40(6): 617-623.
Chen Z, Brodie MJ, Ding D, Kwan P. Editorial: Epidemiology of epilepsy and seizures. Front Epidemiol 2023 3: 1273163.
Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto-Escuela DO, Rocha L. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors. Epilepsia Open 2022 7 Suppl 1(Suppl 1):S23-S33.
Geronzi U, Lotti F, Grosso S. Oxidative stress in epilepsy. Exp Rev Neurother 2018 18(5): 427-434.
Ezz HS, Khadrawy YA, Noor NA. The neuroprotective effect of curcumin and nigella sativa oil against oxidative stress in the pilocarpine model of epilepsy: A comparison with valproate. Neurochem Res 2011 36(11): 2195-2204.
Martinc B, Grabnar I, Vovk T. Antioxidants as a preventive treatment for epileptic process: A review of the current status. Curr Neuropharmacol 2014 12(6): 527-550.
Carvalho G, López-Zuazo I, Provedano B, Sánchez I. Epilepsia. Medicine. Programa de Formación Médica Continuada Acreditado 2019 12(72): 4222- 4231.
Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep 2007 7(4): 348–354.
Waldbaum S, Patel M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42(6): 449–455.
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th Edition, Oxford University Press 2015, New York.
Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, De Curtis M, Perucca P. Epilepsy. Nat Rev Dis Primers 2018 4(1).
Sarmast ST, Abdullahi AM, Jahan N. Current Classification of Seizures and Epilepsies: Scope, Limitations and Recommendations for Future Action. Cureus 2020 12(9):e10549.
Wu S, Tian L. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum). Molecules (Basel, Switzerland) 2017 22(10): 1606.
Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed Pharmacother 2022 153: 113256.
García-Viguera C, Pérez A. La granada. Alimento rico en polifenoles, antioxidantes y bajo en calorias. Alimentación, nutrición y salud 2004 11(4): 113-120.
De la Rosa X, García I, Hernández J, Morales J, Quiroz J. Antocianinas, propiedades funcionales y potenciales aplicaciones terapéuticas. Rev Bol Quím 2022 39(5): 155-163.
Binyamin O, Frid K, Keller G, Saada A, Gabizon R. Comparing anti–aging hallmark activities of metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob disease. Neurobiol Aging 2022 110: 77-87.
Kazemabad MJE, Toni SA, Tizro N, Dadkhah PA, Amani H, Rantiezayat SA, Sheikh Z, Mohammadi M, Alijanzadeh D, Alimohammadi F, Shahrokhi M, Erabi G, Noroozi M, Karimi MA, Honari S, Deravi N. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Front Aging Neurosci 2022 14.
Qubty D, Frid K, Har-Even M, Rubovitch V, Gabizon R, Pick CG. Nano-PSO administration attenuates cognitive and neuronal deficits resulting from traumatic brain injury. Molecules 2022 27(9): 2725.
Bahari H, Rafiei H, Goudarzi K, Omidian K, Asbaghi O, Kolbadi KSH, Naderian M, Hosseini A. The effects of pomegranate consumption on inflammatory and oxidative stress biomarkers in adults: a systematic review and meta-analysis. Inflammopharmacology 2023 31(5): 2283-2301.
Mehdi A, Benchagra L, Boulbaroud S, Ramchoun M, Khalil A, Fülöp T, Berrougui H. Pomegranate (Punica granatum L.) attenuates neuroinflammation involved in neurodegenerative diseases. Foods 2022 11(17): 2570.
Ciccone L, Nencetti S, Rossello A, Orlandini E. Pomegranate: a source of multifunctional bioactive compounds potentially beneficial in Alzheimer’s disease. Pharmaceuticals 2023 16(7): 1036.
Viswanatha GL, Venkataranganna MV, Prasad NBL, Godavarthi A. Evaluation of anti-epileptic activity of leaf extracts of Punica granatum on experimental models of epilepsy in mice. J Intercult Ethnopharmacol 2016 5(4): 415.
Pieróg M, Socała K, Wyska E, Poleszak E, Właź P. Effect of ellagic acid on seizure threshold in two acute seizure tests in mice. Molecules 2021 26(16): 4841.
Pardo-Peña K, Medina-Ceja L, Martínez-Gallegos S, Sánchez-Lira A. Allopurinol and ellagic acid decrease epileptiform activity and the severity of convulsive behavior in a model of status epilepticus. Neuroreport 2023 34(2): 67-74.
El-Missiry MA, Othman AI, Amer MA, Sedki M, Ali SM, El-Sherbiny IM. Nanoformulated ellagic acid ameliorates pentylenetetrazol-induced experimental epileptic seizures by modulating oxidative stress, inflammatory cytokines and apoptosis in the brains of male mice. Metab Brain Dis 2020 35(2): 385-399.
Aleksandrova S, Alexova R, Dragomanova E, Kalfin R, Nicoletti F, Fagone P, Petralia MC, Mangano K, Tancheva L. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int J Mol Sci 2023 24(3).
Boggia R, Turrini F, Roggeri A, Olivero G, Cisani F, Bonfiglio T, Summa M, Grilli M, Caviglioli G, Alfei S, Zunin P, Bertorelli R, Pittaluga A. Neuroinflammation in Aged Brain: Impact of the Oral Administration of Ellagic Acid Microdispersion. Int J Mol Sci 2020 21(10).
Abu-Elfotuh K, Hamdan AME, Abbas AN, et al. Evaluating the neuroprotective activities of vinpocetine, punicalagin, niacin and vitamin E against behavioural and motor disabilities of manganese-induced Parkinson's disease in Sprague Dawley rats. Biomed Pharmacother. 2022; 153:113330.
Huang X, Li W, You B, Tang W, Gan T, Feng C, Li C, Yang R. Serum Metabonomic Study on the Antidepressant-like Effects of Ellagic Acid in a Chronic Unpredictable Mild Stress-Induced Mouse Model. J Agric Food Chem 2020, 68(35), 9546–9556.
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice reverses AlCl3-Induced neurotoxicity and improves learning and memory in female mice. Environ Res 2021 199: 111270.
Wang Y, Tan B, Wang Y, Chen Z. Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules (Basel, Switzerland) 2021 26(8): 2258.
Nasehi M, Hossein M, Reza M, Zarrabian M. Effect of punicalagin on memory deficit due to total sleep deprivation in male Wistar rats. J Integr Neurosci 2021 20(1): 87–93.
Sun W, Yan C, Frost B, Wang X, Hou C, Zeng M, Gao H, Kang Y, Liu J. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Sci Rep 2016 6: 34246.
Sharma P, Kumar M, Bansal N. Ellagic acid prevents 3-nitropropionic acid-induced symptoms of Huntington's disease. Naunyn Schmiedeberg Arch Pharmacol 2021 394: 1917–1928.
Yaidikar L, Byna B, Thakur SR. Neuroprotective effect of punicalagin against cerebral ischemia reperfusion-induced oxidative brain injury in rats. J Stroke Cerebrovasc Dis 2014 23(10): 2869-2878.
Aharoni S, Lati Y, Aviram M, Fuhrman B. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state. BioFactors 2015 41(1).
Serdar B, Erkmen T, Koçtürk S. Combinations of polyphenols disaggregate A beta 1-42 by passing through in vitro blood brain barrier developed by endothelium, astrocyte, and differentiated SH-SY5Y cells. Acta Neurobiol Exp (Wars) 2021 81(4): 335-349.
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023 28(14).
He XM, Zhou YZ, Sheng S, Li JJ, Wang GQ, Zhang F. Ellagic Acid Protects Dopamine Neurons via Inhibition of NLRP3 Inflammasome Activation in Microglia. Oxid Med Cell Longev 2020: 2963540.
Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, Singh V. NLRP3 Inflammasome Inhibitors for Antiepileptogenic Drug Discovery and Development. Int J Mol Sci 2024 25(11): 6078.
Shen PX, Li X, Deng SY, Zhao L, Zhang YY, Deng X, Han B, Yu J, Li Y, Wang ZZ, Zhang Y. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine 2021 64:103227.
An J, Li H, Xia D, Xu B, Wang J, Qiu H, He J. The role of interleukin-17 in epilepsy. Epilepsy Res 2022 186: 107001.
Velagapudi R, Baco G, Khela S, Okorji U, Olajide O. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells. Eur J Nutr 2016 55(4), 1653–1660.
Castañeda-Cabral JL, Ureña-Guerrero ME, López-Pérez SJ. Cerebrovascular Remodeling and the Role of Vascular Endothelial Growth Factor in the Epileptic Brain and Pharmacoresistance. In: Rocha, L.L., Lazarowski, A., Cavalheiro, E.A. (eds) Pharmacoresistance in Epilepsy 2023. Springer, Cham.
Ramadan WS, Alkarim S, Moulay M, Alrefeai G, Alkudsy F, Hakeem KR, Iskander A. Modulation of the Tumor Microenvironment by Ellagic Acid in Rat Model for Hepatocellular Carcinoma: A Potential Target against Hepatic Cancer Stem Cells. Cancers (Basel) 2023 15(19): 4891.
Poza JJ, Becerra JL. Principales farmacológicos del tratamiento antiepiléptico. En Lopez-Gonzalez FJ, Villanueva V, Falip M, Toledo M, Campos D, Serratosa J. Manual de práctica clínica de la epilepsia. Recomendaciones diagnóstico-terapéuticas de la SEN 2019 (pp. 79-87). Luzán 5 Health Consulting.
Espinosa-Jovel C, Sobrino-Mejía F. Farmacorresistencia en epilepsia. Conceptos clínicos y neurobiológicos. Rev Neurol 2015 61(04): 159-166.
Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010 51(6): 1069–1077.
Sequeira-Quezada C, Céspedes-Valverde M, Delgado-Gómez D, Chaves-Jiménez M. Epilepsia resistente a fármacos: definición y mecanismos. Rev Hisp Cienc Salud 2022 8(4): 141-147.
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020 72(3) .606-638.
Boschiero MN, Camporeze B, Santos JSD, Costa LBD, Bonafé GA, Queiroz LS, Van Roost D, Marson FAL, de Aguiar PHP, Ortega MM. The single nucleotide variant n.60G>C in the microRNA-146a associated with susceptibility to drug-resistant epilepsy. Epilepsy Res 2020 162: 106305.
Brodie MJ, Kwan P. Staged approach to epilepsy management. Neurology 2022 58(8 Suppl 5): S2–S8.
Pereira de Melo IL, de Oliveira e Silva AM, Yoshime LT, Gasparotto Sattler JA, Teixeira de Carvalho EB, Mancini-Filho J. Punicic acid was metabolised and incorporated in the form of conjugated linoleic acid in different rat tissues. Int J Food Sci Nutr 2019 70(4): 421–431.
Monaco A, Ferrandino I, Boscaino F, Cocca E, Cigliano L, Maurano F, Luongo D, Spagnuolo MS, Rossi M, Bergamo P. Conjugated linoleic acid prevents age-dependent neurodegeneration in a mouse model of neuropsychiatric lupus via the activation of an adaptive response. J Lipid Res 2018 59(1): 48–57.
Calvano CD, Losito I, Cataldi T. Editorial to the Special Issue “Lipidomics and Neurodegenerative Diseases.” Int J Mol Sci 2021 22(3): 1270.
DOI: https://doi.org/10.25009/eb.v16i40.2637
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.