Abstract
The autistic spectrum disorder (ASD) comprises a complex of neural alterations of development that are expressed in a heterogeneous manner, highlighting constant features of neuroanatomic and functional abnormalities in the cerebellar structure. In this context, there is wide evidence that the endocannabinoid system plays an important role in the regulation of neurotransmission and transduction of both excitatory and inhibitory signals in the cerebellum, which are affected in ASD. In humans with autism, therapeutic interventions with musical stimulation have given successful results to reestablish different behaviors characteristic of the disorder; however, at the neural level and specifically in the cerebellum studies are still limited. In this work, musical stimulation was implemented in an animal model of induced autism after birth. Wistar rats with induced autism were exposed to classical piano music by composer W.A. Mozart from day p1 to p30 and the density of cannabinoid receptors 1 (CB1) in the cortex of the cerebellar flocculus was evaluated. Immunohistochemical analyzes in the cerebellar cortex revealed that subjects of both sexes who received musical stimulation presented higher density in CB1 receptors. In male rats a higher density was found for the molecular and granular layers, whereas in females they were only detected in the granular layer. We concluded that music had an impact at the cellular signaling regulated by cannabinoids in rats with induced autism on the flocculus cerebellar cortex, where there were an increase on CB1 receptors.References
Arndt TL, Stodgell CJ, Rodier PM. The teratology of autism. Review. Int J Dev Neurosci. 2005; 23(2-3):189-99.
Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacol. 2005; 30(1):80-9.
Chomiak T, Karnik V, Block E, Hu B. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism. BMC Neurosci. 2010; 11:102.
Reynolds S, Millette A, Devine DP. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev Neurosci. 2012; 34(2-3):258-67.
Donovan AP, Basson MA. The neuroanatomy of autism - a developmental perspective. J Anat. 2017; 230(1):4-15.
Gomes E, Pedroso FS, Wagner MB. Auditory hypersensitivity in the autistic spectrum disorder. Pro Fono. 2008; 20(4):279-84. Review.
Porges SW, Bazhenova OV, Bal E, Carlson N, Sorokin Y, Heilman KJ, Cook EH, Lewis GF. Reducing auditory hypersensitivities in autistic spectrum disorder: preliminary findings evaluating the listening project protocol. Front Pediatr. 2014; 2:80.
Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009; 44(2):489-501.
Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B,Bakshinskaya DE, Wang SS. Normal cognitive and social development require posterior cerebellar activity. eLife. 2018; 7 e36401.
Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013; 80(3):807-15.
Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. Handb Clin Neurol. 2018; 155:61-72.
Sens PM, de Almeida CI. Participation of the cerebellum in auditory processing. Braz J. Otorhinolaryngol. 2007; 73(2):266-70. Review.
Winkelman B, Frens M. Motor coding in floccular climbing fibers. JNeurophysiol. 2006; 95(4):2342-51.
Azizi SA, Burne RA, Woodward DJ. The auditory corticopontocerebellar projection in the rat: inputs to the paraflocculus and midvermis. An anatomical and physiological study. Exp Brain Res. 1985; 59(1):36-49.
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL,Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017; 134(4):537-566.
Ergaz Z, Weinstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol. 2016; 64:116-40.
Trezza V, Vanderschuren LJ. Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology (Berl). 2008; 197(2):217-27.
Viveros MP, Marco EM, López-Gallardo M, Garcia-Segura LM, Wagner EJ. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev. 2011; 35(8):1740-51.
Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res.2013; 249:124-32.
Chakrabarti B, Persico A, Battista N, Maccarrone M. Endocannabinoid Signaling in Autism. Neurotherapeutics. 2015; 12(4):837-47.
Safo PK, Cravatt BF, Regehr WG. Retrograde endocannabinoid signaling in the cerebellar cortex. Cerebellum. 2006; 5(2):134-45. Review.
Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M. The Cannabinoid CB1 Receptor Mediates Retrograde Signals for Depolarization-Induced Suppression of Inhibition in Cerebellar Purkinje Cells. The Journal of Neuroscience. 2002; 1:22(5):690–1697.
Hashimotodani Y, Ohno-shosaku T, Kano M. Endocannabinoids and Synaptic Function in the CNS. The Neuroscientist. 2007; 13 (2):127-137.
Simpson K, Keen D. Music interventions for children with autism: narrative review of the literature. J Autism Dev Disord. 2011; 41(11):1507-14.
Wigram T, Gold C. Music therapy in the assessment and treatment of autistic spectrum disorder: clinical application and research evidence. Child Care Health Dev. 2006; 32(5):535-42. Review.
DePape AM R; Hall GBC; Tillmann B; Trainor LJ. Auditory Processing in High-Functioning Adolescents with Autism Spectrum Disorder. PLoS ONE. 2012; 7(9) e44084.
Wan CY, Schlaug G. Neural pathways for language in autism: The potential for music-based treatments. Future Neurology. 2010; 5:797–805.
Rausher FH; Robinson D; y Jens JJ. Improved maze learning through early music exposure in rats. Neurological Research. 1998; 20(5):427-432.
Amagdei A, Balteş FR, Avram J, Miu AC. Perinatal exposure to music protects spatial memory against callosal lesions. Int J Dev Neurosci. 2010; 28(1):105-9.
Oguchi-Katayama A, Monma A, Sekino Y, Moriguchi T, Sato K. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. J Toxicol Sci. 2013; 38(3):391-402.
Zarrans J.J Neurofarmacología contemporánea. Elsevier. España. 2011.
Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. Synaptically driven endocannabinoid release requires Ca2+- assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci. 2005; 25(29):6826–35.
Südhof TC, Starke K. Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology 184. Springer-Verlag Berlin Heidelberg. 2008.
Sheikhi S, Saboory E. Neuroplasticity Changes of Rat Brain by Musical Stimuli during Fetal Period. Cell J. 2015; 16(4):448-55.
Mackie K, Stella N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 2006; 8(2):298-306.
Sudarov A. Defining the role of cerebellar Purkinje cells in autism spectrum disorders. Cerebellum. 2013; 12(6):950-5.
Jung KM, Mangieri R, Stapleton C, Kim J, Fegley D, Wallace M, Mackie K, Piomelli D. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors. Mol Pharmacol. 2005; 68(5):1196–1202.
Dean SL, McCarthy MM. Steroids, sex and the cerebellar cortex: implications for human disease. Cerebellum. 2008; 7(1):38-47.
Crespo CN, García LI, Coria Genaro A, Carrillo P, Hernández ME, Manzo J. Mejora de las habilidades motoras y cognitivas de niños con autismo después de un periodo prolongado de juego con deportes virtuales. Revista eNeurobiología 2016. 7(15).
Goddard L, Dritschel B, Howlin P. A preliminary study of gender differences in autobiographical memory in children with an autism spectrum disorder. J Autism Dev Disord. 2014; 44(9):2087-95.
Petacchi A, Laird AR, Fox PT, Bower JM. Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp. 2005; 25(1):118-28.
Halladay AK, Bishop S, Constantino JN, Daniels AM, Koenig K, Palmer K, Messinger D, Pelphrey K, Sanders SJ, Singer AT, Taylor JL, Szatmari P. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism. 2015; 13; 6:36.
Werling DM. The role of sex-differential biology in risk for autism spectrum disorder. Biol Sex Differ. 2016; 16; 7:58.
Viveros MP, Marco EM, López-Gallardo M, Garcia-Segura LM, Wagner EJ. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev. 2011; 35(8):1740-51.
Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res.2013; 15; 249:124-32.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).