Effect of preganglionar denervation on the expression of adrenergic, muscarinic, androgen, and prolactin receptors at the major pelvic ganglion of long-term sexual behaving male rats
Resumen
El ganglio pélvico mayor es un complejo autonómico compuesto por una mezcla de fibras noradrenérgicas y colinérgicas cuyo objetivo es inervar órganos de la visera pélvica. Para llevar a cabo esto, las neuronas expresan receptores a andrógenos, noradrenalina y acetilcolina. Se conoce que la conducta sexual produce una importante actividad neuronal dentro del ganglio, así como incremento sistémico de prolactina y testosterona. La relación entre ambos efectos se observa posterior a la axotomía de los nervios pélvico e hipogástrico. Es por ello por lo que el objetivo de este estudio es determinar cómo estos receptores son modificados por denervación preganglionar en ratas macho. La expresión de los receptores adrenérgicos, colinérgicos, andrógenos y prolactina en el ganglio pélvico mayor fue analizada mediante western Blot en sujetos sexualmente expertos y denervados. Los resultados mostraron que la conducta sexual no promueve cambios en la densidad de ninguno de los receptores analizados, pero la denervación indujo incremento en los niveles de los receptores a andrógenos y muscarínico. Lo que sugiere que el incremento en la expresión de estos receptores podría ser un mecanismo plástico compensatorio debido a la denervación y tal vez para responder a la influencia endocrina y el mantenimiento de la función del ganglio.
Abstract: The major pelvic ganglion is an autonomic complex comprised of a mixture of noradrenergic and cholinergic fibers aimed to innervate most viscera at the pelvic area. To accomplish this, its neurons express receptors to androgen, norepinephrine and acetylcholine ligands. It is known that sexual behavior produces both, an important activity of neuron groups inside the ganglion, and a systemic increase of prolactin and testosterone. The link between both effects is observed following the axotomy of pelvic and hypogastric nerves. Thus, the aim to determine how these receptors are modified by preganglionic denervation of male rats. The expression of adrenergic, cholinergic, androgen, and prolactin receptors in the major pelvic ganglion was analyzed by Western Blots in sexually expert and denervated subjects. Results showed that sexual behavior does not promote changes in protein density, but denervation induces an increase in androgen and muscarinic receptor levels. It is suggested that the increased expression of these receptors could be a plastic compensatory mechanism following denervation maybe to respond to endocrine influences and maintain the function of the ganglion.
Keywords: Pelvic nerve; hypogastric nerve; autonomic neurotransmission.
Palabras clave
Texto completo:
PDFReferencias
Keas JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. Int Rev Cytol 2006 248: 141-208.
Aldahmash A & Atteya M. Ganglionectomy in the adult male rat increases neuronal size and synaptic density in remaining contralateral major pelvic ganglion. Curr Neurobiol 2011 2: 5-15
Keast JR & Saunders RJ. Testosterone has potent, selective effects on the morphology of pelvic autonomic neurons which control the bladder, lower bowel and internal reproductive organs of the male rat. Neurosci 1998 85(2): 543-556
Eastham J, Stephenson C, Korstanje K, & Gillespie JI. The expression of β 3-adrenoceptor and muscarinic type 3 receptor immuno-reactivity in the major pelvic ganglion of the rat. Naunyn Schmiedebergs Arch Pharmacol 2015 388(7): 695-708.
Girard BM, Galli JR, Vizzard MA, & Parsons RL. Galanin expression in the mouse major pelvic ganglia during explant culture and following cavernous nerve transection. J Mol Neurosci 2012 48(3): 713-720.
Meusburger SM & Keast JR. Testosterone and nerve growth factor have distinct but interacting effects on structure and neurotransmitter expression of adult pelvic ganglion cells in vitro. Neurosci 2001 108(2): 331-340.
Diaz R, Garcia LI, Locia J, Silva M, Rodriguez S, Perez CA, Aranda-Abreu GE, Manzo J, Toledo R, & Hernandez, M. E. Histological modifications of the rat prostate following transection of somatic and autonomic nerves. Anais da Academia Brasileira de Ciências 2010 82(2): 397-404.
Nangle MR & Keast JR. Deafferentation and axotomy each cause neurturin-independent upregulation of c-Jun in rodent pelvic ganglia. Exp Neurol 2009 215(2): 271-280.
Fang J, Chung YW, & Clemens LG. Relation of Fos-IR expression in the pelvic ganglion to sexual behavior in laboratory rats. Behav Neurosci 2000 114(3): 543.
Hernandez ME, Soto-Cid A, Rojas F, Pascual LI, Aranda-Abreu GE, Toledo R, Garcia LI, Quintanar-Stephano, & Manzo J. Prostate response to prolactin in sexually active male rats. Reprod Biol Endocrin 2006 4(1): 28
Hernandez ME, Soto-Cid A, Aranda-Abreu GE, Díaz R, Rojas F, Garcia LI, Toledo R, & Manzo J. A study of the prostate, androgens and sexual activity of male rats. Reprod Biol Endocrin 2007 5(1): 11.
Schirar A, Chang C, & Rousseau JP. Localization of androgen receptor in nitric oxide synthase‐and vasoactive intestinal peptide‐containing neurons of the major pelvic ganglion innervating the rat penis. J Neuroendocrinol 1997 9(2): 141-150.
Nie H, Cao Q, Zhu L, Gong Y, Gu J, & He Z. Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PloS one 2013 8(4): e61678
Chua, FY, & Adams BD. Androgen receptor and miR-206 regulation in prostate cancer. Transcription 2017 8(5): 313-327.
Traish A, Kim NN, Moreland RB, & Goldstein I. Role of alpha adrenergic receptors in erectile function. Int J Impot Res 2000 12(1): s48-s63
Snoeren, E. M. The role of adrenoceptors in the central nervous system in male and female rat sexual behavior. Eur J Pharmacol, 2015 753: 229-245.
Hernández-Aguilar ME, Serrano MK, Pérez F, Aranda-Abreu GE, Sanchez V, Mateos A, Manzo J, Rojas-Durán F, Cruz-Gomez Y, & Herrera-Covarrubias D. Quantification of neural and hormonal receptors at the prostate of long-term sexual behaving male rats after lesion of pelvic and hypogastric nerves. Physiol Behav 2020 222: 112915.
Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, & Frenette PS. Autonomic nerve development contributes to prostate cancer progression. Sci 2013 341(6142): 1236361.
Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, Shine D, Kadmon D, Thompson T, Miles BJ, Ittmann MM, & Rowley D. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 2008 14(23): 7593-7603.
Hamilton SE, Schlador ML, McKinnon LA, Chmelar RS, & Nathanson NM. Molecular mechanisms for the regulation of the expression and function of muscarinic acetylcholine receptors. J Physiol Paris 1998 92(3-4): 275-278.
Golder M, Burleigh DE, Belai A, Ghali L, Ashby D, Lunniss PJ, & Williams NS. Smooth muscle cholinergic denervation hypersensitivity in diverticular disease. The Lancet 2003 361(9373): 1945-1951.
Kyi C, Garcia V, & Schulz DJ. Impact of Decentralization on Cholinergic Neurotransmission in Neurons of Mouse Major Pelvic Ganglia. Faseb J 2017 31(1_supplement): 861-13.
Reilly CM, Stopper VS, & Mills TM. Androgens modulate the α‐adrenergic responsiveness of vascular smooth muscle in the corpus cavernosum. J Androl 1997 18(1): 26-31
DOI: https://doi.org/10.25009/eb.v12i29.2554
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.