Conductas autistas en un modelo inducido con ácido valproico en pez cebra. Una revisión sistemática

Bernardo Flores-Prieto, Jorge Manzo-Denes, María Elena Hernández-Aguilar, Deissy Herrera-Covarrubias, Donají Chi-Castañeda, César Pérez-Estudillo, Esveidy Roldán-Anzures, María Rebeca Toledo-Cárdenas

Resumen


El trastorno del espectro autista (TEA) es un desorden del neurodesarrollo de alta prevalencia, con manifestaciones significativas en las áreas socioafectiva y comportamental, cuyas causas aún permanecen indeterminadas. La investigación de sus posibles causas y tratamientos se apoya en modelos animales manipulados genéticamente y los no genéticos con el uso de teratógenos o factores ambientales. Uno de los modelos no genéticos es la administración de ácido valproico (AVP) durante el desarrollo embrionario, que ha sido ampliamente utilizado en ratas y ratones, permitiendo así la evaluación de distintos comportamientos relacionados al TEA. El modelo también existe en la especie de pez cebra, aunque los estudios aún son escasos. En esta revisión sistematizada con la metodología PRISMA, se sintetiza la información disponible sobre evaluaciones conductuales en experimentos con un modelo de pez cebra tratado con AVP en etapas embrionarias. Se realizó una búsqueda con este propósito, en dos bases de datos con las palabras clave: autism, autism spectrum disorder*, zebrafish, behavior y valproic acid y se analizaron sus resultados conductuales en relación con la sintomatología del TEA. De acuerdo con la información revisada este modelo cumple con las características conductuales suficientes para establecer homologías con las observadas en humanos TEA, por lo que su uso parece garantizar una apropiada tarea traslacional en esta área del conocimiento.

Abstract

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, with significant manifestations in the socio-affective and behavioral areas, whose causes remain undetermined. The investigation of its possible causes and treatments is supported by genetically manipulated animal models and non-genetic ones with the use of teratogens or environmental factors. One of the non-genetic models is the administration of valproic acid (VPA) during embryonic development, which has been widely used in rats and mice, thus allowing the evaluation of different behaviors related to ASD. Although studies are still scarce, the model also exists in the zebrafish species. In this systematized review with the PRISMA methodology, the available information on behavioral evaluations in experiments with a zebrafish model treated with AVP in embryonic stages is synthesized. A search was carried out for this purpose, in two databases with the keywords: autism, autism spectrum disorder*, zebrafish, behavior, and valproic acid, and their behavioral results were analyzed in relation to ASD symptoms. According to the information reviewed, this model meets sufficient behavioral characteristics to establish homologies with those observed in ASD humans, so its use seems to guarantee an appropriate translational task in this area of knowledge.

Keywords: Autism; animal models; VPA; zebrafish; behavior.


Palabras clave


Autismo; modelos animales; AVP; pez cebra; conducta.

Texto completo:

PDF

Referencias


American Psychiatric Association. American Psychiatric Association DSM-5. Manual Diagnóstico y Estadístico de los Trastornos Mentales DSM-5®. Editorial Médica Panamericana. 2014. 310

Rea, V, van Raay, TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Frontiers in Molecular Neuroscience. 2020. 13, 207.

Howe K, Clark MD, Stemple DL. The zebrafish reference genome sequence and its relationship to the human genome. Nature.2013. 496, 498.

Gottfried C, Bambino-Junior V, Baronio D, Zanatta G, Silverstrin RB, Vaccaro T, Riesgo R. Valproic Acid in Autism Spectrum Disorder: From an Environmental Risk Factor to a Reliable Animal Model. Recent Advances in Autism Spectrum Disorders - Volume I. 2013.

Chateauvieux, S, Morceau F, Diederich M. Valproic Acid. Encyclopedia of Toxicology: Third Edition. 2021. 905–8

Saft P, Toledo-Cardenas R, Coria-Avila GA, Perez-Pouchulen M, Brug B, Hernandez ME, Manzo J. Characterization of four types of tail abnormalities in rats treated prenatally with valproic acid. Revista Eneurobiología. 2014. 5(9).

Ogi, A, Licitra R, Naef V, Marchese M, Fronte B, Gazzano A, Santorelli FM. Social Preference Tests in Zebrafish: A Systematic Review. Frontiers in Veterinary Science. 2021. 7, 1239.

Page MJ, McKenzie JW, Bossuyt PM, Boutron I, Hoffman TC, Mulrow CD, Shamseer L, Tezlaff JM, Moher D. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. Journal of clinical epidemiology. 2021. 134, 103–12.

Zimmermann FF, Gaspary KV, Leite CE, de Paula Cognato G, Bonan CD. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicology and teratology. 2015. 52, 36–41.

Baronio D, Puttonen HAJ, Sundvik M, Semenova S, Lehtonen E, Panula P. Embryonic exposure to valproic acid affects the histaminergic system and the social behaviour of adult zebrafish (Danio rerio). British Journal of Pharmacology. 2018. 175, 797–809.

Robea MA, Ciobica A, Curpan AS, Plavan G, Strungru S, Lefter R, Nicoara M. Preliminary Results Regarding Sleep in a Zebrafish Model of Autism Spectrum Disorder. Brain Sciences 2021. Vol. 11, Page 556. 11, 556.

Chen J, Lei L, Tian L, Hou F, Roper C, Ge X, Zhao Y, Chen Y, Dong Q, Tanguay RL, Huang C. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicology and teratology. 2018. 66, 8–16.

Dwivedi S, Medishetti R, Rani R, Sevilimedu A, Kulkarni P, Yogeeswari P. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. Journal of Pharmacological and Toxicological Methods. 2019. 95, 56–65.

Joseph TP, Zhou F, Sai LY, Chen H, Lin SL, Schachner M. Duloxetine ameliorates valproic acid-induced hyperactivity, anxiety-like behavior, and social interaction deficits in zebrafish. Autism research: official journal of the International Society for Autism Research. 2021. 15, 27–41.

Bailey JM, Oliveri AN, Karbahri N, Brooks RAJ, De La Rocha AJ, Janardhan S, Levin ED. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish. Neurotoxicology. 2016. 52, 23–33.

Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S. Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reproductive toxicology (Elmsford, N.Y.). 2012. 33, 165–73.

Lee S, Chun HS, Lee J, Park HJ, Kim KT, Yoon S, Kim WK. Plausibility of the zebrafish embryos/larvae as an alternative animal model for autism: A comparison study of transcriptome changes. PloS one. 2013. 13.

Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H, Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Developmental Neuroscience. 2020. 42, 12–48.

Ergaz Z, Weinstein-Fudim, L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reproductive Toxicology. 2016. 64, 116–40.

Wu J, Dai YC, Lan XY, Zhang HF, Bai SZ, Hu Y, Han SP, Han JS, Zhang R. Postnatal AVP treatments prevent social deficit in adolescence of valproic acid-induced rat autism model. Peptides. 2021. 137.

Schneider T, Turczak JI, Przewłocki R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2006. 31, 36–46.

Bougeard C, Picarel-Blanchot F, Schmid R, Campbell R, Buitelaar J. Prevalence of Autism Spectrum Disorder and Co-morbidities in Children and Adolescents: A Systematic Literature Review. Frontiers in Psychiatry. 2021. 12, 744709.

Schneider T, Przewłocki R. Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Animal Model of Autism. Neuropsychopharmacology 2005. 2004. 30:1. 30, 80–89.

de Abreu MS, Genario R, Giacomini ACVV, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalluef AV. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience. 2020. 445, 3–11.

Kalueff A, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman GP, Pittman J, Rosemberg DB, Gerlai R, Echeverria D, Lamb E, Neuhauss SCF, Weng W, Bally.Cuif L, Schneider H.. Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond. Zebrafish. 2013. 10, 70.

Shafaghi A, Vakili S, Amizadeh A, Heidari MR, Meymandi S, Bashiri H. The effect of early handling on anxiety-like behaviors of rats exposed to valproic acid pre-and post-natally. Neurotoxicology and Teratology. 2021. 89, 107050.

Banerjee A, Engineer CT, Sauls BL, Morales AA, Kilgard MP, Ploski JE. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Frontiers in Behavioral Neuroscience. 2014. 0, 387.

Lal H, Sherman GT, Fielding S, Dunn R, Kruse H, Theurer K. Effect of valproic acid on anxiety-related behaviors in the rat. Brain Research Bulletin. 1980. 5, 575–77.

Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of postembryonic zebrafish development: Staging by externally visible anatomy of the living fish. Developmental Dynamics. 2009 238, 2975–3015.

Cui K, Wang Y, Zhu Y, Tao T, Yin F, Guo Y, Liu H, Li F, Wang P, Chen Y, Qin J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsystems & Nanoengineering 2020. 6:1. 6, 1–14.




DOI: https://doi.org/10.25009/eb.v13i33.2616

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.