Artificial vagino-cervical stimulation modifies the frequency of uterine contractions during the estrous cycle of the female rat
Resumen
Las contracciones uterinas (CU) pueden participar en importantes procesos reproductivos, como el transporte de espermatozoides y el parto. La evidencia indica que las CU pueden ser inducidas por hormonas y estimulación vaginocervical (EVC) a través de vías neuroendocrinas, incluida la actividad de las glándulas pituitaria y ovarios. Evaluamos la frecuencia de CU después de la EVC en diferentes fases del ciclo estral (CE) en ratas hembras adultas. Treinta y seis ratas hembras fueron anestesiadas, y sus cuernos uterinos fueron expuestos a través de una incisión abdominal. La EVC incluyó intromisiones vaginocervicales (IVC) y distensión vaginal mediante la inserción de un tapón de silicón para imitar los efectos del tapón posteyaculatorio. El número de CU se midió: 1) antes y después de las IVC, 2) durante la distensión vaginal por el tapón de silicón, y después de que se retiró. Comparamos el efecto de la EVC en la cantidad de CU durante las diferentes etapas de la CE de ratas. Los resultados indicaron que la frecuencia de la CU basal fue mayor durante el proestro tardío y menor durante el diestro. Además, las intromisiones dieron como resultado una mayor actividad uterina. La EVC aumentó el número de contracciones durante todas las fases de la CE, excepto durante el diestro. Discutimos el papel de las hormonas y la estimulación sexual en la CU, y su posible implicación en los procesos reproductivos de las hembras.
Abstract: Uterine contractions (UC) can participate in important reproductive processes such as sperm transport and parturition. Evidence indicates that UC can be induced by hormones and vaginocervical-stimulation (VCS) via neuroendocrine pathways, including the activity of the pituitary and reproductive glands. The frequency of UC was evaluated after VCS at different phases of the estrous cycle (EC) in adult female rats. Thirty-six female rats were anesthetized, and the uterine horns were exposed via abdominal incision. VCS included vaginocervical intromissions (VCI) and vaginal distention via insertion of a silicon plug to mimic the effects of the post-ejaculatory sperm plug. The number of UC was measured 1) before and after VCI, 2) during the vaginal distention by the silicon plug and after it was removed. The effect of VCS on the amount of UC during different stages of the rat EC was compared. Results indicated that the frequency of baseline UC was higher during late-proestrus and lower during diestrus. In addition, intromissions resulted in higher uterine activity. Interestingly, VCS increased the number of contractions during all phases of the EC, except during diestrus. The role of hormones and sexual stimulation on UC, and the potential implication in reproductive processes in females are discussed.
Keywords: Vaginocervical stimulation; uterine contractions; estrous cycle; female rat.
Palabras clave
Referencias
Holmes LG, Himle MB, Sewell KK, Carbone PS, Strassberg DS, Murphy NA. Addressing Sexuality in Youth with Autism Spectrum Disorders: Current Pediatric Practices and Barriers. J Dev Behav Pediatrics. 2014;35(3):172.
Knickmeyer RC, Wheelwright S, Hoekstra R, Baron-Cohen S. Age of menarche in females with autism spectrum conditions. Dev Med Child Neurol. 2006;48(12):1007-1008.
Tordjman S, Anderson GM, McBride AP, Hertzig ME, Snow ME, Hall LM, Ferrari P, Cohen DJ. Plasma androgens in autism. J Autism Dev Disord. 1995;25(3):295-304.
Coleman M, Gillberg C. The Autisms. Oxford University Press; 2012.
Manzo J, Carrillo P, Coria-Avila GA, Garcia LI. The sexual cerebellum. En: Komisaruk BR and G Gonzalez-Mariscal, Behavioral neuroendocrinology. CRC Press 2017:103-112.
Hernandez ME, Soto-Cid A, Aranda-Abreu GE, Diaz R, Rojas F, Garcia LI, Toledo R, Manzo J. A study of the prostate, androgens and sexual activity of male rats. Reprod Biol Endocrin. 2007;5(1):11.
Manzo J, Vazquez MI, Cruz MR, Hernandez ME, Carrillo P, Pacheco P. Fertility ratio in male rats Effects after denervation of two pelvic floor muscles. Physiology Behav. 2000;68(5):611-618.
Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol. 1996;370(2):247-261.
Oyabu A, Narita M, Tashiro Y. The effects of prenatal exposure to valproic acid on the initial development of serotonergic neurons. Int J Dev Neurosci. 2013;31(3):202-208.
Mychasiuk R, Richards S, Nakahashi A, Kolb B, Gibb R. Effects of Rat Prenatal Exposure to Valproic Acid on Behaviour and Neuro-Anatomy. Dev Neurosci-basel. 2012;34(2-3):268-276.
Fueta Y, Sekino Y, Yoshida S, Kanda Y, Ueno S. Prenatal exposure to valproic acid alters the development of excitability in the postnatal rat hippocampus. Neurotoxicology. 2018.
Perez-Pouchoulen M, Miquel M, Saft P, Brug B, Toledo R, Hernandez ME, Manzo J. Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats. Int J Dev Neurosci. 2016;53:46-52.
Reynolds S, Millette A, Devine DP. Sensory and Motor Characterization in the Postnatal Valproate Rat Model of Autism. Dev Neurosci-basel. 2012;34(2-3):258-267.
Manzo J, Miquel M, Toledo R, Mayor-Mar JA, Garcia LI, Aranda-Abreu GE, Caba M, Hernandez ME. Fos expression at the cerebellum following non-contact arousal and mating behavior in male rats. Physiol Behav. 2008;93(1-2):357-363.
McGinnis M, Dreifuss R. Evidence for a role of testosterone-androgen receptor interactions in mediating masculine sexual behavior in male rats. Endocrinology. 1989;124(2):618-626.
Sachs BD, Barfield RJ. Temporal patterning of sexual behavior in the male rat. J Comp Physiol Psych. 1970;73(3):359.
Lucio RA, Manzo J, Martínez-Gómez M, Sachs BD, Pacheco P. Participation of pelvic nerve branches in male rat copulatory behavior. Physiology Behav. 1994;55(2):241-246.
Hernandez M, Soto-Cid A, Rojas F, Pascual LI, Aranda-Abreu GE, Toledo R, Garcia LI, Quintanar-Stephano A, Manzo J. Prostate response to prolactin in sexually active male rats. Reprod Biol Endocrin. 2006;4(1):1-12.
DeFilippis M, Wagner K. Treatment of Autism Spectrum Disorder in Children and Adolescents. Psychopharmacol Bull. 2016;46(2):18-41.
Anderson GM, Scahill L, McCracken JT, McDougle CJ, Aman MG, Tierney E, Arnold LE, Martin A, Katsovich L, Posey DJ, Shah B, Vitiello B. Effects of Short- and Long-Term Risperidone Treatment on Prolactin Levels in Children with Autism. Biol Psychiat. 2007;61(4):545-550.
McGill TE, Coughlin RC. Ejaculatory Reflex and Luteal Activity Induction In Musculus. J Reprod Fertil 1970 21: 215–220.
Crane LH, Martin L. Postcopulatory myometrial activity in the rat as seen by video-laparoscopy. Reprod Fertil Dev 1991 3: 685-698.
Yin Z, Sada AA, Reslan OM, Narula N, Khalil RA. Increased MMPs expression and decreased contraction in the rat myometrium during pregnancy and in response to prolonged stretch and sex hormones. Am J Physiol Endocrinol Metab 2012 303: 55–70.
Langendijk P, Bouwman E, Soede N, Taverne M, Kemp B. Myometrial activity around estrus in sows: spontaneous activity and effects of estrogens, cloprostenol, seminal plasma and clenbuterol. Theriogen 2002 57: 1563–1577
Waynforth HB, Flecknell PA. Experimental and Surgical Technique in the Rat Neuroscience. Academic Press, eds. London. 1999 pp 113-114.
Maeda KI, Ohkura S, Tsukamura H. Physiology of reproduction. En: G. J. Krinke, ed.The Laboratory Rat, Academic Press, New York. 2000 145–176.
Westwood FR. The Female Rat Reproductive Cycle: A Practical Histological Guide to Staging. Toxicol Pathol 2008 36: 375-384.
Goldman JM, Murr AS, Cooper RL. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol 2007 80: 84–97.
Woolley C, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 1992 12: 2549–2554.
Blume SR, Freedberg M, Vantrease JE, Chan R, Padival M, Record MJ, De Joseph MR, Urban JH, Rosenkranz JA. Sex-and estrus-dependent differences in rat basolateral amygdala. J Neurosci 2017 37: 10567-10586.
Södersten P. Estradiol-Progesterone Interactions in the Reproductive Behavior of Female Rats. In: Ganten D., Pfaff D. (eds) Actions of Progesterone on the Brain. Current Topics in Neuroendocrinology, vol 5. Springer, Berlin, Heidelberg 1985 pp 141-174.
Hoar W, Hickman CP. Ovariectomy and the estrous cycle of the rat. In: W. Hoar & C. P. Hickman (eds.), General and comparative physiology, 2. ed. Prentice-Hall, New Jersey. 1975 pp 260-265.
Butcher RL, Collins WE, Fugo NW. Plasma Concentration of LH, FSH, Prolactin, Progesterone and Estradiol-17β Throughout the 4-Day Estrous Cycle of the Rat. Endocrinol 1974 94: 1704–1708.
Wheaton LG, Pijanowski GJ, Weston PG, Burke TJ. Uterine motility during the estrous cycle: studies in healthy bitches. Am J Vet Res 1988 49: 82-6.
Sheldrick EL, Flint AP. Circulating concentrations of oxytocin during the estrous cycle and early pregnancy in sheep. Prostangland 1981 22: 631-636.
Beach FA. Sexual attractivity, proceptivity,and receptivity in female mammals. Horm Behav 1976 70: 105-138.
Pfaff DW. Nature of sex hormone effects on rat sex behavior: specificity of effects and individual patterns of response. J Comp Physiol Psychol 1970 73: 349-358
Gibb W, Lye S, Challis,. Knobil, Neills. Physiology of Reproduction. In: Jimmy D. Neill (eds.), 2006 pp 2925-2974.
Challis JR, Lye SJ. Parturition. In: Knobil E, Neil JD, editors. The Physiology of Reproduction. New York: Raven Press 1994 pp 985–1031.
Shafik A. Study of the uterine response to vaginal distension: the vagino–uterine reflex. Gynecol Obstet Invest. 1997 44:265-2.
DOI: https://doi.org/10.25009/eb.v10i25.2566
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.