Effects of enriched environment on the expression of GABA receptors at the cerebellar vermis in the valproate rat model of autism

Juan Antonio Pérez-Rodríguez, María Rebeca Toledo-Cárdenas, Deissy Herrera-Covarrubias, Genaro Alfonso Coria-Ávila, Luis Isauro García-Hernández, María Elena Hernández-Aguilar, Jorge Manzo-Denes

Resumen


El autismo es un trastorno del neurodesarrollo que se presenta en niños y tiene al cerebelo como una de las principales áreas afectadas, incluyendo alteraciones en la neurotransmisión del ácido gamma-aminobutírico (GABA). Esto ha estimulado el desarrollo de tratamientos dirigidos al sistema GABAérgico, aunque también se sabe que el ambiente enriquecido (EE) estimula favorablemente la conducta y quizás la neurotransmisión. Por ello, utilizando en rata el modelo posnatal de autismo inducido con valproato, estudiamos la densidad de los receptores GABAA y GABAB en el vermis cerebelar por Western Blots. Crías de rata fueron tratadas diariamente del día posnatal 6 al 12 con ácido valproico (VPA), y se estudiaron sujetos controles y experimentales de 30 y 90 días de edad organizados por sexo, EE y receptores. Los resultados mostraron que los receptores GABAA y GABAB decrementaron dependiendo del sexo y edad, y se observó que con la edad los receptores GABAA de machos decrementaron antes que en las hembras y a largo plazo. La estimulación con el EE evitó la reducción de receptores GABAA. Los receptores GABAB no fueron afectados en las hembras, mientras que en los machos se afectaron sólo a los 30 días, sugiriendo que el VPA produjo un efecto leve que les permitió a los receptores mantenerse por sí mismos en el largo plazo. La alta sensibilidad al VPA de los receptores GABAAmasculinos significa que al menos estos receptores juegan un papel en la prevalencia niño-niña del autismo y que el EE es un acercamiento terapeútico preventivo apropiado.


Abstract

Autism is a neurodevelopmental disorder in kids being the cerebellum a key affected area, and cerebellar alterations compromise the gamma-aminobutyric acid (GABA) neurotransmission which has stimulated efforts to develop treatments targeted to the GABA system. In addition, it is known that an enriched environment (EE) favorably affects behavior and perhaps neurotransmission. Thus, in the postnatal valproate model of autism in rats, we studied density modifications of GABAA and GABAB receptors at the cerebellar vermis by Western Blots analysis. Pup rats of both sexes were treated daily from postnatal days 6 to 12 with valproic acid (VPA). Control and experimental subjects of 30 and 90 days old were studied by sex, age, EE stimulation, and receptors. Results showed that GABAA and GABAB receptors in autistic rats were reduced depending on sex and age. The study at two ages showed that GABAA receptors in males decreased earlier than females with a long-lasting effect, while EE stimulation had a favorable impact showing that effectively prevents the reduction of GABAA receptors. In males, GABAB receptors were affected only at 30 days, suggesting that VPA produced a mild effect that was enough for these receptors to maintain by themselves in the long term, while these receptors were not affected at all in females. It is suggested that the higher sensitivity of male GABAA receptors to the VPA could mean that at least these receptors also play a role in the male-female tendency of autism and that EE is an appropriate preventive therapeutic approach.

Keywords: Male autism; valproic acid; cerebellum; neurotransmission.


Palabras clave


Autismo masculino; ácido valproico; cerebelo; neurotransmisión.

Texto completo:

PDF

Referencias


Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 2006 7(7): 511-522.

Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 1997 7(2): 269-278.

Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci-switz 2015 9: 420.

Schiffmann SN, Vanderhaeghen JJ. Immunocytochemical detection of GABAergic nerve cells in the human striatum and cerebellum using a gamma-aminobutyric acid antiserum. Neurochem Int 1990 17(1): 101-106.

Blatt GJ, Soghomonian JJ, Yip J. Glutamic acid decarboxylase (GAD) as a biomarker of GABAergic activity in autism: Impact on cerebellar circuitry and function. En: Blatt GJ, The neurochemical basis of autism. Springer Science 2010 95-111.

Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD. Expression of GABAb receptors is altered in brains of subjects with autism. Cerebellum 2009 8(1): 64-69.

Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. GABAa receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2008 39(2): 223.

El-Ansary A. GABA and glutamate imbalance in autism and their reversal as novel hypothesis for effective treatment strategy. Autism Dev Disord 2020 18(3): 46-63.

Dai Y, Zhang L, Yu J, Zhou X, Ji Y, Wang K, Du X, Liu X, Tang Y, Deng S, Langley C, Li W, Zhang J, Feng J, Sahakian BJ, Luo Q, Li F. Improved symptoms following bumetanide treatment in children aged 3 to 6 years with autism spectrum disorder via GABAergic mechanisms: a randomized, double-blind, placebo-controlled trial. Medrxiv 2020: 2020.09.18.20197640.

Hadjikhani N, Zürcher NR, Rogier O, Ruest T, Hippolyte L, Ben-Ari Y, Lemonnier E. Improving emotional face perception in autism with diuretic bumetanide: A proof-of-concept behavioral and functional brain imaging pilot study. Autism 2015 19(2): 149-157.

Woo CC, Donnelly JH, Steinberg-Epstein R, Leon M. Environmental enrichment as a therapy for autism: A clinical trial replication and extension. Behav Neurosci 2015 129(4): 412-422.

Sood D, Szymanski M, Schranz C. Enriched home environment program for preschool children with autism spectrum disorders. J Occup Ther Sch Early Intervention 2015 8(1): 40-55.

Fernández-Lechuga AI, Nuñez-Arcos LY, Carrillo P, Garcia LI, Coria-Ávila GA, Toledo R, Hernández ME, Manzo J. Reduction of cutaneous von Frey thresholds in boys with autism following a year of tactile and emotional stimulation. Rev Mex Neurociencia 2021 22(3): 1-4.

Nuñez-Arcos LY, Fernández-Lechuga AI, Coria-Ávila GA, García LI, Toledo-Cárdenas MR, Hernández-Aguilar ME, Manzo J. Mozart para el autismo: Cuantificación de parámetros cardiorrespiratorios durante la escucha. eNeurobiol 2020 28(11): 131220.

Schneider T, Turczak J, Przewłocki R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism. Neuropsychopharmacol 2006 31(1): 36-46.

Yamaguchi H, Hara Y, Ago Y, Takano E, Hasebe S, Nakazawa T, Hashimoto H, Matsuda T, Takuma K. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav Brain Res 2017 333: 67-73.

Monje-Reyna D, García-Hernández LI, Carrillo-Castilla P, Coria-Ávila GA, Toledo-Cárdenas MR, Hernández-Aguilar ME, Manzo J. Incremento de receptores endocanabinoides cerebelares tras estimulación musical de ratas con autismo inducido posnatalmente. eNeurobiol 2019 23(10): 220219.

Crespo CN, Garcia LI, Coria GA, Carrillo P, Hernandez ME, Manzo J. Mejora de las habilidades motoras y cognitivas de niños con autismo después de un periodo prolongado de juego con deportes virtuales. eNeurobiologia 2016 15: 070716.

Reynolds S, Millette A, Devine DP. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev Neurosci-basel 2012 34(2-3): 258-267.

Cohen BI. Use of a GABA-transaminase agonist for treatment of infantile autism. Med Hypotheses 2002 59(1): 115-116.

Oblak AL, Gibbs TT, Blatt GJ. Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res 2011 1380: 218-228.

Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K. Developmental changes of glutamate and GABA receptor densities in Wistar rats. Front Neuroanat 2019 13: 100.

Barnes EM. Use-dependent regulation of GABAa receptors. Int Rev Neurobiol 1996 39:53-76.

Perez-Pouchoulen M, Miquel M, Saft P, Brug B, Toledo R, Hernandez ME, Manzo J. Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats. Int J Dev Neurosci 2016 53: 46-52.

Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why are autism spectrum conditions more prevalent in males? Plos Biol 2011 9(6): e1001081.

Wang M. Neurosteroids and GABA-A receptor function. Front Endocrinol 2011 2: 44.

Fernández-Guasti A, Martínez-Mota L. Anxiolytic-like actions of testosterone in the burying behavior test: role of androgen and GABA-benzodiazepine receptors. Psychoneuroendocrino 2005 30(8): 762-770.

Xu Q, Yang JW, Cao Y, Zhang LW, Zeng XH, Li F, Du SQ, Wang LP, Liu CZ. Acupuncture improves locomotor function by enhancing GABA receptor expression in transient focal cerebral ischemia rats. Neurosci Lett 2015 588: 88-94.

Yoon SS, Kim H, Choi KH, Lee BH, Lee YK, Lim SC, Choi SH, Hwang M, Kim KJ, Yang CH. Acupuncture suppresses morphine self-administration through the GABA receptors. Brain Res Bull 2010 81(6): 625-630.

Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABAa receptors: structure, function, pharmacology, and related disorders. J Genetic Eng Biotechnology 2021 19(1): 123.

Evenseth LSM, Gabrielsen M, Sylte I. The GABAb receptor—structure, ligand binding and drug development. Molecules 2020 25(13): 3093.

Fritschy J, Paysan J, Enna A, Mohler H. Switch in the expression of rat GABAa-receptor subtypes during postnatal development: An immunohistochemical study. J Neurosci 1994 14(9): 5302-5324.

Gaiarsa JL, Porcher C. Emerging neurotrophic role of GABAb receptors in neuronal circuit development. Front Cell Neurosci 2013 7: 206.

Pizzarelli R, Cherubini E. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011 2011: 297153.




DOI: https://doi.org/10.25009/eb.v13i31.2598

Enlaces refback

  • No hay ningún enlace refback.


 

eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.