Neurodegenerative diseases: The spinocerebellar ataxia type 7 in Mexico
Resumen
Resumen
Las ataxias espinocerebelosas (AECs) son un grupo de enfermedades neurodegenerativas que tienen un origen genético. Algunas son causadas por la mutación en un gen que conduce a la producción de una proteína anormal llamada ataxina, un factor de transcripción que tiende a formar inclusiones en el núcleo y el citoplasma de la célula. Esta alteración se ha asociado con las manifestaciones clínicas y patológicas de la enfermedad. Sin embargo, poco se sabe acerca de estas enfermedades en muchos países de América Latina. Objetivo. El propósito de esta revisión es presentar el estado actual de la investigación sobre las AECs, su clasificación y describir a una familia Mexicana diagnosticada con AEC tipo 7 (AEC7), para entender su historia y su genealogía. Método: La investigación se realizó de la base de datos del PUBMED y de los archivos del Instituto de Rehabilitación para las Ataxias en México (IRAM). Conclusión. Debido a la importancia de describir la prevalencia y la frecuencia de las AECs en otros estados de México, es necesario apoyar la investigación en esta área, especialmente en las instituciones de salud del gobierno.
Abstract
The spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases that have a genetic origin. Some are caused by a mutation in a gene that lead to the production of an abnormal protein called ataxin, a transcription factor that tends to form inclusions in the nucleus and cytoplasm of the cell. This alteration has been associated with the clinical and pathological manifestations of this disease. However, little is known about these diseases in many Latin American countries. Objective: The purpose of this review is to present the current state of research on SCAs, its classification, and to describe a Mexican family diagnosed with SCA type 7 (SCA7), to understand its history and genealogy. Method: Searches of the PUBMED databases and files of the Instituto de Rehabilitacion para las Ataxias en Mexico (IRAM) were performed. Conclusion: Because it is important to describe the prevalence and frequencies of the SCAs in other states of Mexico, it is necessary to support research in this area, especially in government health institutions.
Keywords: Spinocerebellar ataxia; neurodegenerative disease; triplet repeats; ataxin.
Palabras clave
Texto completo:
PDFReferencias
Saenz de Pipaon I, Larumbe R. Programa de Enfermedades Neurodegenerativas. An Sist Sanit Navar 2001 24 (suppl 3): 49-76.
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatr Neurosci 2012 37: 1-18.
Wu T, Hallett M. The cerebellum in Parkinson´s disease. Brain 2013 136: 696-709.
Tasset I, Sanchez F, Tunez I. Bases moleculares de la enfermedad de Huntington: papel del estres oxidativo. Rev Neurologia 2009 49: 417-424.
Rio-Izquierdo J, Montalban X. Natalizumab en esclerosis multiple. Rev Neurologia 2009 49: 265-269.
Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld H, Shoesmith C, Strong J, Woolley SC. Practice Parameter update: The care of the patient with amyotrophic lateral sclerosis: Drug, nutritional, and respiratory therapies (an evidence-based review). Neurology2009 73: 1218-1226.
Pabello M. La proteina MeCP2 y sus implicaciones en enfermedades neurodegenerativas. Degree Thesis. Xalapa Ver, Mexico; 2007.
Fogel BL. Ataxia Classification. National Ataxia Foundation 2013: 1-2.
Klockgether T, Evert B. Genes involved in hereditary ataxias. Trends Neurosci 1998 21: 413-418.
Velazquez L. Ataxia espinocerebelosa tipo 2. Principales aspectos neurofisiologicos en el diagnostico, pronostico y evolucion de la enfermedad. Holguin (Ed.), La Habana. 2006 pp 5-113.
Nance M. Living with ataxia. 2nd (Ed.), New York. 2003 pp 2-39.
Ganong WF. Fisiologia Medica. 10th (Ed.), Mexico,2002 pp 239-244.
Plaitakis A. Classification and epidemiology of cerebellar degenerations. In: Plaitakis A (Ed.). Cerebellar Degenerations: Clinical Neurobiology. Massachusetts: Kluwer Academic Publishers. 1992 pp 185-204.
Stevanin G, Lebre AS, Zander C, Cancel G, Durr A, Brice A. Autosomal dominant cerebellar ataxia with progressive pigmentary macular dystrophy. In: Manto MU, Pandolfo M (Ed.). The Cerebellum and its Disorders. Cambridge University Press. England 2002 pp 459-468.
David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997 17: 65-70.
Jonasson J, Juvonen V, Sistonen P, Ignatius J, Johansson D, Bjorck EJ, Wahlstrom J, Melberg A, Holmgren G, Forsgren L, Holmberg M. Evidence for a common Spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur J Hum Genet 2000 8: 918-922.
Cancel G, Duyckaerts C, Holmberg M, Zander C, Yvert G, Lebre AS, Ruberg M, Faucheux B, Agid Y, Hirsch E, Brice A. Distribution of ataxin-7 in normal human brain and retina. Brain 2000 123: 2519-2530.
Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin J, Durr A, Zaim A, Ravise N, Busque C, Penet C, Van Broeckhoven C, Brice A. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet 1995 10: 84-88.
David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, Belal S, Lebre AS, Abada M, Grid B, Holmberg M, Yahyaoui M, Hentati F, Chkill T, Agid Y, Brice A. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 1998 7: 165-170.
Kim Y, Park SS, Joo SI, Kim JM, Jeon BS. Molecular analysis of spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6 and SCA7. Mol Cel 2001 12: 336-341
Papalia DE, Wendkos S. Desarrollo Humano. McGraw-Hill/Interamericana, Mexico. 1990 pp 52-57.
Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009 85: 544-557.
Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu W, Okuda H, Koizumi A. Expansion of intronic GGCCTG hexanucleotide repeat inNOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 2011 81: 121-130.
Adelman JP, Bond CT, Pessia M, Maylie M. Episodic ataxia results from voltage-dependent potassium channels with altered function. Neuron 1995 15: 1449-1454.
Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 1997 276: 1709-1712.
Chevis CF, da Silva CB, D´Abreu A, Lopes-Cendes I, Cendes F, Bergo FP, Franca MC. Spinal cord atrophy correlates with disability in Friedreich´s Ataxia. Cerebellum 2013 12: 43-47.
Marmolino D, Manto M. Past, present and future for cerebellar ataxias. Curr Neuropharmacol 2010 8: 41-61.
Grisolia S. Genetica de las enfermedades neurodegenerativas. In: Segovia de Arana JM, Mora-Teruel F (Ed.). Enfermedades Neurodegenerativas. Serie Cientifica Farmaindustria. Madrid 2002 pp 131-157.
Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade?. Brain Res Rev 2005 50: 134-141..
Bitoun E, Finelli MJ, Oliver PL, Lee S, Davies KE. AF4 is a critical regulator of the IGF-1 signaling pathway during Purkinje cell development. J Neurosci 2009 29: 15366-15374.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000 26: 191-194.
Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, Alonso E. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 2001 50: 234-239.
Alonso E, Martinez-Ruano L, De Biase I, Mader C, Ochoa A, Yescas P, Gutierrez R, White M, Ruano L, Fragoso-Benitez M, Ashizawa T, Bidichandani SI, Rasmussen A. Distinct distribution of autosomal dominant spinocerebellar ataxia in the mexican population. Movement Disord 2007 22: 1050-1053.
Velazquez-Perez L, Rodriguez-Labrada R, Canales-Ochoa N, Sanchez-Cruz G, Fernandez-Ruiz J, Medrano-Montero J, Aguilera-Rodriguez R, Diaz R, Almaguer-Mederos LE, Palomino-Truitz A. Progression markers of Spinocerebellar Ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci 2010 290: 22-26.
Gouw LG, Digre KB, Harris CP, Ptacek LJ. Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 1994 44: 1441-1447.
Bird TD, Pagon RA, La Spada AR. Spinocerebellar Ataxia type 7. GeneReviews1998 1: 1-15.
Martin JJ, Regemorter NV, Krols L, Brucher JM, Barsy T, Szliwowski H, Evrard P, Ceuterick C, Tassignon MJ, Dieleman HS, Delatte H, Willems PJ, Broeckhoven CV. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol 1994 88: 227-286.
Abe T, Tsuda T, Yoshida M, Wada Y, Kano T, Itoyama Y, Tamai M.(2000). Macular degeneration associated with aberrant expansion of trinucleotide repeat of the SCA 7 gen in 2 Japanese families. Arch Ophthalmol 2000 118: 1415-1421.
Castañeda MA, Avalos C, Jeri FR. Clinical and genetic studies of a family from Peru affected by spinocerebellar ataxia type 7. Rev Neurol 2000 31: 923-928.
Gouw LG, Castañeda MA, McKenna CK, Digre KB, Pulst SM, Perlman S, Lee MS, Gomez C, Fischbeck K, Gagnon D, Storey E, Bird T, Jeri FR, Ptacek LJ. Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum Mol Genet 1998 7: 525-532.
Mayo D, Yusta A, Vazquez JM, Garcia-Ruiz P, Robledo M, Benitez J. Ataxia espinocerebelar tipo VII (AEC 7). Comunicacion de una familia española afectada. Rev Neurol 1999 28: 964-966.
Holmberg M, Johansson J, Forsgren L, Heljbel J, Sandgren O, Holmgren G. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1. Hum Mol Genet 1995 4: 1441-1445.
Gu W, Wang Y, Liu X, Zhou B, Zhou Y, Wang G. Molecular and clinical study of spinocerebellar ataxia type 7 in Chinese kindreds. Arch Neurol 2000 57: 1513-1518.
Johansson J, Forsgren L, Sandren O, Brice A, Holmgren G, Holmberg M. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 1998 7: 171-176.
Rolon-Lacarriere O, Rasmussen-Almaraz A, Hernandez-Cruz H, Carranza-del Rio J, Gonzalez-Cruz M, Gutierrez-Moctezuma J. Ataxia espinocerebelosa de tipo 7: descripcion de una familia mexicana. Rev Neurol 2004 38: 736-740.
Holmberg M, Duyckaerts C, Dürr A, Cancel G, Gourfinkel-An I, Damier P, Faucheux B, Trottier Y, Hirsch E, Agid Y, Brice A. Spinocerebellar ataxia type 7 (SCA7): A neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 1998 7: 913-918.
Fernandez Ruiz J, Diaz R, Hall‐Haro C, Vergara P, Fiorentini A, Nuñez L, Drucker‐Colin R, Ochoa A, Yescas P, Rasmussen A, Alonso E. Olfactory dysfunction in hereditary ataxia and basal ganglia disorders. Neuroreport 2003 14: 1339-1341.
Galvez-Zuñiga VH, Diaz-Perez R, Fernandez-Ruiz J. Identificacion olfativa en pacientes con ataxia espinocerebelar tipo 7. 11th Meeting of Grupo de Bioseñales. Xalapa, Ver., Mexico 2012.
Horton LC, Frosch MP, Vangel MG, Weigel-DiFranco C, Berson EL, Schmahmann JD. Spinocerebellar ataxia Type 7: Clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum 2013; 12: 176-193.
Ström AL, Forsgren L, Holmberg M. Identification and characterization of spinocerebellar ataxia type 7 (SCA7) isoform SCA7b in mice. Biochim Biophys Acta 2005 1731: 149-153.
Gatchel JR, Watase K, Thaller C, Carson JP, Jafar-Nejad P, Shaw C, Zu T, Orr HT, Zoghbi Y. The insulin-like growth factor patway is altered in spinocerebellar ataxia type 1 and type 7. P Natl Acad Sci USA 2008 105: 1291-1296.
Chen S, Peng G, Wang X, Smith A, Grote S, Shoper B, Spada A. Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localization. Hum Mol Genet 2004 13: 53-67.
Garden G, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE, Smith AC, Martinez RA, Fine GC, Grote SK, Ware CB, Einum DD, Morrison RS, Ptacek LJ, Sopher BL, La Spada AR. Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci 2002 15: 4897-4905.
Latouche M, Fragner P, Martin E, Hachimi KH, Zander C, Sittler A, Ruberg M, Brice A, Stevanin G. Polyglutamine and polyalanine expansions in ataxin 7 result in different types of aggregation and levels of toxicity. Mol Cell Neurosci 2006 31: 438-445.
Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark A. The neuropathology of CAG repeat diseases: review and update of genetic and molecular features. Brain Pathol 1997 7: 901-926..
Da Cunha S, Goes W, Marques W. Spinocerebellar ataxia type 7 (SCA7). Family princeps, history, genealogy and geographical distribution. Arq Neuro-psiquiat 2006 64: 222-227.
Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, Van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D. Ataxin-7 is a subunit of GCN5 histone acetyltransferase containing complexes. Hum Mol Genet 2004 13: 1257-1265.
McCulloug SD, Grant PA. Histone acetylation, acetyltransferasa, and ataxia-alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. Adv Protein Chem Struct Biol 2010 79: 165-203.
Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmüller A, Picaud S, Zoghbi H, Trottier Y, Tora L, Devys D. Glutamine-expanded Ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. Plos Biol 2006 4: 432-445.
Helmlinger D, Abou-Sleymane G, Yvert G, Rousseau S, Weber C, Trottier Y, Mandel JL, Devys D. Disease progression despite early loss of polyglutamine protein expression in SCA7 mouse model. J Neurosci2004 24: 1881-1887.
Schaefer MH, Wanker EE, Andrade-Navarro MA. Evolution and function of CAG/polyglutamine repeats in protein-protein interaction networks. Nucleic Acids Res 2012 40: 4273-4287.
Young JE, Gouw L, Propp S, Shoper BL, Taylor J, Lin A, Hermel E, Logvinova A, Chen SF, Chen S, Bredesen, DE, Truant R, Ptacek LJ, La Spada AR, Ellerby LM. Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcripcional dysregulation. J Biol Chem 2007 282: 30150-30160.
Labbadia J, Novoselov SS, Bett JS, Weiss A, Paganetti P, Bates GP, Cheetham ME. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 2012 35: 1180-1196.
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.