Post-accidente vascular cerebral: hacia una terapia global
Resumen
El accidente vascular cerebral es el padecimiento neurológico, más frecuente, que puede llevar a la incapacidad funcional de una persona. El tratamiento primario por lo general no va seguido de una terapia global para inhibir el proceso neuroinflamatorio. Es indispensable que se inhiba el proceso neuroinflamatorio para que la persona pueda si es posible continuar con su vida normal. Inhibir la expresión de la ciclooxigenasa 2 (COX-2) permitirá que el paciente se recupere debidamente. Nosotros proponemos una terapia global a base de medicamentos como la nimesulida y el citalopram y complementos como los ácidos omega-3 y el resveratrol, que hará que el paciente se recupere de manera satisfactoria. Presentamos un caso severo de una persona que sufrió primero un derrame cerebral y después un trauma craneal y que accedió a seguir esta terapia.
Abstract
The stroke is most common neurological condition, which can lead to functional disability of a person. Primary treatment usually is not followed by a comprehensive therapy to inhibit the neuroinflammatory process. It is essential that the neuroinflammatory process is inhibited so that the person can if you can continue with your normal life. Inhibiting the expression of cyclooxygenase 2 (COX-2) allows the patient to recover properly. We propose a comprehensive therapy with drugs such as nimesulide and citalopram and supplements such as omega-3 fatty acids and resveratrol, which will make the patient, recovers satisfactorily.
We present a severe case of a person who suffered a stroke first and then head trauma and agreed to continue this therapy.
Key words: Cyclooxygenase-2; neuroinflammation; therapy; cranial trauma; stroke; food supplements; medicines.
Palabras clave
Texto completo:
PDFReferencias
Scholzke MN, Schwaninger M. Transcriptional regulation of neurogenesis: potential mechanisms in cerebral ischemia. J Mol Med (Berl). 2007;85:577-588.
Maldonado NJ, Kazmi SO, Suarez JI. Update in the Management of Acute Ischemic Stroke. Crit Care Clin. 2014;30(4):673-697.
Chen S, Zeng L, Hu Z. Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. J Neurol. 2014.
Elijovich L, Patel PV, Hemphill JC. Intracerebral hemorrhage. Semin Neurol. 2008;28:657-667.
Luo Y. Cell-based therapy for stroke. J Neural Transm. 2011;118:61-74.
Lu Q, Gao L, Huang L et al. Inhibition of mammalian target of rapamycin improves neurobehavioral deficit and modulates immune response after intracerebral hemorrhage in rat. J Neuroinflammation. 2014;11:44.
Herrera-Rivero M, Aranda- Abreu G. Therapeutics of Alzheimer´s Disease. In: Intech, editor. advanced understanding of neurodegenerative diseases. Ucrania: Ucrania; 2011. p. 193-212.
Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res. 2013;23:131-144.
Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1-12.
McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging. 2001;22:799-809.
Miller AA, Spencer SJ. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav Immun. 2014.
Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T. Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock. 2001;16:165-177.
Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol. 2003;53 Suppl 3:S49-58.
McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26:459-470.
Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol. 2006;65:199-203.
Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulat. 2008;15:323-330.
Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am. 2009;29:321-337.
De Vries HE, Blom-Roosemalen MC, van Oosten M et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996;64:37-43.
Laflamme N, Lacroix S, Rivest S. An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci. 1999;19:10923-10930.
Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63:901-910.
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev. 2006;52:201-243.
Ahmad M, Graham SH. Inflammation after stroke: mechanisms and therapeutic approaches. Transl Stroke Res. 2010;1:74-84.
Khansari PS, Sperlagh B. Inflammation in neurological and psychiatric diseases. Inflammopharmacology. 2012;20:103-107.
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918-934.
Lee M. Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sc. 2013;14:21-32.
Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem Res. 2012;37:903-910.
Yang H, Chen C. Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des. 2008;14:1443-1451.
Gaur V, Kumar A. Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury. Drug Chem Toxicol. 2012;35:218-224.
Peng M, Wang YL, Wang FF, Chen C, Wang CY. The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats. J Surg Res. 2012;178:e1-e8.
Nimmo AJ, Vink R. Recent patents in CNS drug discovery: the management of inflammation in the central nervous system. Recent Pat CNS Drug Discov. 2009;4:86-95.
Letarte N, Bressler LR, Villano JL. Bevacizumab and central nervous system (CNS) hemorrhage. Cancer Chemother Pharmacol. 2013;71:1561-1565.
Khanna A, Walcott BP, Kahle KT, Simard JM. Effect of glibenclamide on the prevention of secondary brain injury following ischemic stroke in humans. Neurosurg Focus. 2014;36:E11.
Adukauskiene D, Bivainyte A, Radaviciute E. Cerebral edema and its treatment. Medicina (Kaunas). 2007;43:170-176.
De los Reyes RA, Ausman JI, Diaz FG. Agents for cerebral edema. Clin Neurosurg. 1981;28:98-107.
Hoschl C, Hajek T. Hippocampal damage mediated by corticosteroids--a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci. 2001;251 Suppl 2:II81-II88.
Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M. Prehospital stroke care: new prospects for treatment and clinical research. Neurology. 2013;81:501-508.
Qizilbash N, Lewington SL, Lopez-Arrieta JM. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev. 2000CD000064.
Albizzati MG, Candelise L, Capitani E, Colombo A, Spinnler H. Association of glycerol to dexamethasone in treatment of stroke patients. Acta Neurol Scand. 1979;60:77-84.
Freeman J, Tappin J, Karat AB, Meecham J. Dexamethasone in acute stroke. Br Med J. 1978;2:1500.
Candelario-Jalil E, Mhadu NH, Gonzalez-Falcon A et al. Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J Neuroinflamm. 2005;2:3.
Candelario-Jalil E. Nimesulide as a promising neuroprotectant in brain ischemia: new experimental evidences. Pharmacol Res. 2008;57:266-273.
Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28:1374-1384.
Alboni S, Benatti C, Capone G et al. Time-dependent effects of escitalopram on brain derived neurotrophic factor (BDNF) and neuroplasticity related targets in the central nervous system of rats. Eur J Pharmacol. 2010;643:180-187.
Jorge RE, Acion L, Moser D, Adams HPJ, Robinson RG. Escitalopram and enhancement of cognitive recovery following stroke. Arch Gen Psychiatry. 2010;67:187-196.
Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2014.
Renaud J, Martinoli MG. Resveratrol as a Protective Molecule for Neuroinflammation: a Review of Mechanisms. Curr Pharm Biotechnol. 2014.
Zhang F, Liu J, Shi JS. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol. 2010;636:1-7.
Lacroix I, Lapeyre-Mestre M, Bagheri H, Pathak A, Montastruc JL. Nonsteroidal anti-inflammatory drug-induced liver injury: a case-control study in primary care. Fundam Clin Pharmacol. 2004;18:201-206.
Mahajan A, Sharma R. COX-2 selective nonsteroidal anti-inflammatory drugs: current status. J Assoc Physicians India. 2005;53:200-204.
Aithal GP, Day CP. Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin Liver Dis. 2007;11:563-75.
Marques PE, Oliveira AG, Pereira RV et al. Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology. 2014.
Connolly MK, Ayo D, Malhotra A et al. Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology. 2011;54:959-968.
Kerola M, Vuolteenaho K, Kosonen O, Kankaanranta H, Sarna S, Moilanen E. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo. Basic Clin Pharmacol Toxicol. 2009;104:17-21.
Zhang T, Zhang YX. [The effect of nimesulide on learning and memory function after serve traumatic brain injury in rats]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011;42:498-502.
Cernak I, O’Connor C, Vink R. Activation of cyclo-oxygenase-2 contributes to motor and cognitive dysfunction following diffuse traumatic brain injury in rats. Clin Exp Pharmacol Physiol. 2001;28:922-925.
Seo MK, Lee CH, Cho HY et al. Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures. Neuropharmacology. 2014;79:222-233.
Wuwongse S, Cheng SS, Wong GT et al. Effects of corticosterone and amyloid-beta on proteins essential for synaptic function: implications for depression and Alzheimer’s disease. Biochim Biophys Acta. 2013;1832:2245-2256.
Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and citalopram decrease microglial release of glutamate and D-serine to promote cortical neuronal viability following ischemic insult. Mol Cell Neurosci. 2013;56:365-374.
Espinera AR, Ogle ME, Gu X, Wei L. Citalopram enhances neurovascular regeneration and sensorimotor functional recovery after ischemic stroke in mice. Neuroscience. 2013;247:1-11.
Wang J, Shi Y, Zhang L et al. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol Dis. 2014;68:91-103.
Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci. 2014;338:135-141.
Eady TN, Khoutorova L, Obenaus A, Mohd-Yusof A, Bazan NG, Belayev L. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. Neurobiol Dis. 2014;62:1-7.
Hu X, Zhang F, Leak RK et al. Transgenic overproduction of omega-3 polyunsaturated fatty acids provides neuroprotection and enhances endogenous neurogenesis after stroke. Curr Mol Med. 2013;13:1465-1473.
Panickar KS, Qin B, Anderson RA. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract, and resveratrol in vitro. Nutr Neurosci. 2014.
Saleh MC, Connell BJ, Rajagopal D et al. Co-administration of resveratrol and lipoic acid, or their synthetic combination, enhances neuroprotection in a rat model of ischemia/reperfusion. PLoS One. 2014;9:e87865.
Clark D, Tuor UI, Thompson R et al. Protection against recurrent stroke with resveratrol: endothelial protection. PLoS One. 2012;7:e47792.
DOI: https://doi.org/10.25009/eb.v6i13.2580
Enlaces refback
- No hay ningún enlace refback.
eNeurobiología es una publicación cuatrimestral editada por el Instituto de Investigaciones Cerebrales de la Universidad Veracruzana. Estamos ubicados en Av. Dr. Luis Castelazo Ayala, s/n, colonia Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, México. Teléfono: 8418900 ext. 13062, www.iice.uv.mx; eneurobiologia@uv.mx. Reserva de Derechos al Uso Exclusivo 04-2023-061314100600-102, otorgada por el Instituto Nacional de Derechos de Autor. ISSN: 2007-3054. Esta obra está bajo una Licencia Creative Commons Attribution 4.0 International.