Resting-State EEG Findings in Autism Spectrum Disorder: A Review of Patterns, Connec-tivity, and Functional Biomarkers

Versions

PDF (Español (España))
html (Español (España))

Keywords

EEG
ASD
resting state
functional connectivity
biomarkers

How to Cite

Laurean-Quiroga, N., Navarro-Nolasco, D. A., Herrera-Covarrubias, D., Coria-Ávila, G. A., Toledo-Cárdenas, M. R., Aranda-Abreu, G. E., … Manzo-Denes, J. (2025). Resting-State EEG Findings in Autism Spectrum Disorder: A Review of Patterns, Connec-tivity, and Functional Biomarkers. Revista eNeurobiología, 16(41). https://doi.org/10.25009/eb.v16i41.2652

Abstract

Autism spectrum disorder (ASD) represents a challenge for neurophysiological characterization due to its clinical heterogeneity. In this context, resting-state electroencephalography (rsEEG) has emerged as a valuable tool for exploring functional patterns in the pediatric population. The aim of this review was to synthesize the available evidence on rsEEG findings in children and adolescents with ASD and to analyze the methodological approaches employed in recent literature. A PubMed search was conducted, restricted to human studies with full-text availability and focused on pediatric samples. Thirty-eight empirical investigations met these criteria. In addition, VOSviewer was used to perform a semantic co-occurrence analysis of titles and abstracts, which grouped the evidence into four main themes: neurofunctional development, alterations in brain rhythms, dynamics of functional connectivity, and computational algorithms applied to diagnosis. The results indicate atypical trajectories in the maturation of oscillatory activity and brain connectivity, decreased signal complexity, regional functional reorganization, and dissociations between global integration and local instability. Advances were also documented in the application of deep learning models, such as convolutional networks, long short-term memory networks, and graph-based networks, which have achieved high diagnostic accuracy using rsEEG data. In conclusion, the reviewed evidence supports rsEEG as a promising tool for the development of ASD biomarkers, highlighting that its integration with artificial intelligence optimizes the characterization of the atypical brain functional architecture in autism.

https://doi.org/10.25009/eb.v16i41.2652
PDF (Español (España))
html (Español (España))

References

Wang, L., Wang, B., Wu, C., Wang, J., & Sun, M. (2023). Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. International Journal of Molecular Sciences, 24(3), 1819. https://doi.org/10.3390/ijms24031819

Milovanovic, M., & Grujicic, R. (2021). Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Frontiers in Psychiatry, 12, 686021. https://doi.org/10.3389/fpsyt.2021.686021

Das, S., Zomorrodi, R., Enticott, P. G., Kirkovski, M., Blumberger, D. M., Rajji, T. K., & Desarkar, P. (2022). Resting state electroencephalography microstates in autism spectrum disorder: A mini-review. Frontiers in Psychiatry, 13, 988939. https://doi.org/10.3389/fpsyt.2022.988939

Cellier, D., Riddle, J., Petersen, I., & Hwang, K. (2021). The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental Cognitive Neuroscience, 50, 100969. https://doi.org/10.1016/j.dcn.2021.100969

Chung, Y. G., Jeon, Y., Kim, R. G., Cho, A., Kim, H., Hwang, H., Choi, J., & Kim, K. J. (2022). Variations of Resting-State EEG-Based Functional Networks in Brain Maturation From Early Childhood to Adolescence. Journal of Clinical Neurology, 18(5), 581. https://doi.org/10.3988/jcn.2022.18.5.581

Angulo-Ruiz, B. Y., Ruiz-Martínez, F. J., Rodríguez-Martínez, E. I., Ionescu, A., Saldaña, D., & Gómez, C. M. (2023). Linear and Non-linear Analyses of EEG in a Group of ASD Children During Resting State Condition. Brain Topography, 36(5), 736-749. https://doi.org/10.1007/s10548-023-00976-7

Wang, L., Wang, B., Wu, C., Wang, J., & Sun, M. (2023). Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. International Journal of Molecular Sciences, 24(3), 1819. https://doi.org/10.3390/ijms24031819

NLM. (2025). National Library of Medicine. NIH. https://meshb.nlm.nih.gov/record/ui?ui=D015415

Angulo-Ruiz, B. Y., Ruiz-Martínez, F. J., Rodríguez-Martínez, E. I., Ionescu, A., Saldaña, D., & Gómez, C. M. (2023). Linear and Non-linear Analyses of EEG in a Group of ASD Children During Resting State Condition. Brain Topography, 36(5), 736-749. https://doi.org/10.1007/s10548-023-00976-7

Rea, H. M., Clawson, A., Hudac, C. M., Santhosh, M., Bernier, R. A., Earl, R. K., Pelphrey, K. A., Webb, S. J., Neuhaus, E., & the GENDAAR Consortium. (2023). Pubertal maturation and timing effects on resting state electroencephalography in autistic and comparison youth. Developmental Psychobiology, 65(7), e22415. https://doi.org/10.1002/dev.22415

Jaime, M., McMahon, C. M., Davidson, B. C., Newell, L. C., Mundy, P. C., & Henderson, H. A. (2016). Brief Report: Reduced Temporal-Central EEG Alpha Coherence During Joint Attention Perception in Adolescents with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 46(4), 1477-1489. https://doi.org/10.1007/s10803-015-2667-3

Proteau-Lemieux, M., Knoth, I. S., Davoudi, S., Martin, C. O., Bélanger, A. M., Fontaine, V., Côté, V., Agbogba, K., Vachon, K., Whitlock, K., Biag, H.M.B., Thurman, A. J., Rosenfelt, C., Tassone, F., Frei, J., Capano, L., Abbeduto, L., Jacquemont, S., Hessl, D., Hagerman, R. J., Schneider, A., Bolduc, F., Anagnostou, E. & Lippe, S. (2024). Specific EEG resting state biomarkers in FXS and ASD. Journal of Neurodevelopmental Disorders, 16(1), 53. https://doi.org/10.1186/s11689-024-09570-9

Wan, L., Li, Y., Zhu, G., Yang, D., Li, F., Wang, W., Chen, J., Yang, G., & Li, R. (2024). Multimodal investigation of dynamic brain network alterations in autism spectrum disorder: Linking connectivity dynamics to symptoms and developmental trajectories. NeuroImage, 302, 120895. https://doi.org/10.1016/j.neuroimage.2024.120895

Manzo Denes, J. (2019). Un segundo espectro del autismo: De la conducta a la neurona. eNeurobiología. https://doi.org/10.25009/eb.v10i23.2539

Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine, 9(1), 18. https://doi.org/10.1186/1741-7015-9-18

Heunis, T., Aldrich, C., Peters, J. M., Jeste, S. S., Sahin, M., Scheffer, C., & De Vries, P. J. (2018). Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder – a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Medicine, 16(1), 101. https://doi.org/10.1186/s12916-018-1086-7

Ghanbari, Y., Bloy, L., Christopher Edgar, J., Blaskey, L., Verma, R., & Roberts, T. P. L. (2015). Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism. Journal of Autism and Developmental Disorders, 45(2), 444-460. https://doi.org/10.1007/s10803-013-1915-7

Wang, J., Wang, X., Wang, X., Zhang, H., Zhou, Y., Chen, L., Li, Y., & Wu, L. (2020). Increased EEG coherence in long‐distance and short‐distance connectivity in children with autism spectrum disorders. Brain and Behavior, 10(10), e01796. https://doi.org/10.1002/brb3.1796

Zhao, J., Song, J., Li, X., & Kang, J. (2020). A study on EEG feature extraction and classification in autistic children based on singular spectrum analysis method. Brain and Behavior, 10(12), e01721. https://doi.org/10.1002/brb3.1721

Damiano-Goodwin, C. R., Woynaroski, T. G., Simon, D. M., Ibañez, L. V., Murias, M., Kirby, A., Newsom, C. R., Wallace, M. T., Stone, W. L., & Cascio, C. J. (2018). Developmental sequelae and neurophysiologic substrates of sensory seeking in infant siblings of children with autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 41-53. https://doi.org/10.1016/j.dcn.2017.08.005

Neuhaus, E., Lowry, S. J., Santhosh, M., Kresse, A., Edwards, L. A., Keller, J., Libsack, E. J., Kang, V. Y., Naples, A., Jack, A., Jeste, S., McPartland, J. C., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Van Horn, J. D., Pelphrey, K., Webb, S. J., & and the ACE GENDAAR Network. (2021). Resting state EEG in youth with ASD: Age, sex, and relation to phenotype. Journal of Neurodevelopmental Disorders, 13(1), 33. https://doi.org/10.1186/s11689-021-09390-1

Yoon, D., & Kim, E. Y. (2023). Sensory Processing and Autistic Traits: Mediation Effect of Frontal Alpha Asymmetry. Occupational Therapy International, 2023, 1-7. https://doi.org/10.1155/2023/5065120

Zeng, K., Kang, J., Ouyang, G., Li, J., Han, J., Wang, Y., Sokhadze, E. M., Casanova, M. F., & Li, X. (2017). Disrupted Brain Network in Children with Autism Spectrum Disorder. Scientific Reports, 7(1), 16253. https://doi.org/10.1038/s41598-017-16440-z

Hornung, T., Chan, W.-H., Müller, R.-A., Townsend, J., & Keehn, B. (2019). Dopaminergic hypo-activity and reduced theta-band power in autism spectrum disorder: A resting-state EEG study. International Journal of Psychophysiology, 146, 101-106. https://doi.org/10.1016/j.ijpsycho.2019.08.012

Mash, L. E., Keehn, B., Linke, A. C., Liu, T. T., Helm, J. L., Haist, F., Townsend, J., & Müller, R.-A. (2020). Atypical Relationships Between Spontaneous EEG and fMRI Activity in Autism. Brain Connectivity, 10(1), 18-28. https://doi.org/10.1089/brain.2019.0693

Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2007). Resting State Cortical Connectivity Reflected in EEG Coherence in Individuals With Autism. Biological Psychiatry, 62(3), 270-273. https://doi.org/10.1016/j.biopsych.2006.11.012

Carter Leno, V., Tomlinson, S. B., Chang, S.-A. A., Naples, A. J., & McPartland, J. C. (2018). Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Scientific Reports, 8(1), 11982. https://doi.org/10.1038/s41598-018-30445-2

Kakuszi, B., Szuromi, B., Tóth, M., Bitter, I., & Czobor, P. (2024). Alterations in resting-state gamma-activity is adults with autism spectrum disorder: A High-Density EEG study. Psychiatry Research, 339, 116040. https://doi.org/10.1016/j.psychres.2024.116040

Jaime, M., McMahon, C. M., Davidson, B. C., Newell, L. C., Mundy, P. C., & Henderson, H. A. (2016). Brief Report: Reduced Temporal-Central EEG Alpha Coherence During Joint Attention Perception in Adolescents with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 46(4), 1477-1489. https://doi.org/10.1007/s10803-015-2667-3

Pierce, S., Kadlaskar, G., Edmondson, D. A., McNally Keehn, R., Dydak, U., & Keehn, B. (2021). Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: An EEG-MRS study. Journal of Neurodevelopmental Disorders, 13(1), 5. https://doi.org/10.1186/s11689-020-09351-0

Malaia, E., Bates, E., Seitzman, B., & Coppess, K. (2016). Altered brain network dynamics in youths with autism spectrum disorder. Experimental Brain Research, 234(12), 3425-3431. https://doi.org/10.1007/s00221-016-4737-y

Malaia, E. A., Ahn, S., & Rubchinsky, L. L. (2020). Dysregulation of temporal dynamics of synchronous neural activity in adolescents on autism spectrum. Autism Research, 13(1), 24-31. https://doi.org/10.1002/aur.2219

Tang, T., Li, C., Zhang, S., Chen, Z., Yang, L., Mu, Y., Chen, J., Xu, P., Gao, D., Li, F., He, B., & Zhu, Y. (2024). A hybrid graph network model for ASD diagnosis based on resting-state EEG signals. Brain Research Bulletin, 206, 110826. https://doi.org/10.1016/j.brainresbull.2023.110826

Xu, Y., Yu, Z., Li, Y., Liu, Y., Li, Y., & Wang, Y. (2024). Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN–LSTM model. Computer Methods and Programs in Biomedicine, 250, 108196. https://doi.org/10.1016/j.cmpb.2024.108196

Kang, J., Mao, W., Wu, J., Geng, X., & Li, X. (2025). TDCS Modulates Brain Functional Networks in Children with Autism Spectrum Disorder: A Resting-State EEG Study. Journal of Integrative Neuroscience, 24(3), 27314. https://doi.org/10.31083/JIN27314

Pillai, A. S., McAuliffe, D., Lakshmanan, B. M., Mostofsky, S. H., Crone, N. E., & Ewen, J. B. (2018). Altered task‐related modulation of long‐range connectivity in children with autism. Autism Research, 11(2), 245-257. https://doi.org/10.1002/aur.1858

Scheffler, A. W., Telesca, D., Sugar, C. A., Jeste, S., Dickinson, A., DiStefano, C., & Şentürk, D. (2019). Covariate‐adjusted region‐referenced generalized functional linear model for EEG data. Statistics in Medicine, 38(30), 5587-5602. https://doi.org/10.1002/sim.8384

Schmitt, L. M., Li, J., Liu, R., Horn, P. S., Sweeney, J. A., Erickson, C. A., & Pedapati, E. V. (2022). Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Molecular Autism, 13(1), 47. https://doi.org/10.1186/s13229-022-00527-0

Susam, B. T., Riek, N. T., Beck, K., Eldeeb, S., Hudac, C. M., Gable, P. A., Conner, C., Akcakaya, M., White, S., & Mazefsky, C. (2022). Quantitative EEG Changes in Youth With ASD Following Brief Mindfulness Meditation Exercise. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2395-2405. https://doi.org/10.1109/TNSRE.2022.3199151

He, C., Cortes, J. M., Kang, X., Cao, J., Chen, H., Guo, X., Wang, R., Kong, L., Huang, X., Xiao, J., Shan, X., Feng, R., Chen, H., & Duan, X. (2021). Individual‐based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Human Brain Mapping, 42(10), 3282-3294. https://doi.org/10.1002/hbm.25434

Cañigueral, R., Palmer, J., Ashwood, K. L., Azadi, B., Asherson, P., Bolton, P. F., McLoughlin, G., & Tye, C. (2022). Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention‐Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD. Journal of Child Psychology and Psychiatry, 63(7), 745-761. https://doi.org/10.1111/jcpp.13514

Lawrence, K. E., Hernandez, L. M., Bowman, H. C., Padgaonkar, N. T., Fuster, E., Jack, A., Aylward, E., Gaab, N., Van Horn, J. D., Bernier, R. A., Geschwind, D. H., McPartland, J. C., Nelson, C. A., Webb, S. J., Pelphrey, K. A., Green, S. A., Bookheimer, S. Y., Dapretto, M., & GENDAAR Consortium. (2020). Sex Differences in Functional Connectivity of the Salience, Default Mode, and Central Executive Networks in Youth with ASD. Cerebral Cortex, 30(9), 5107-5120. https://doi.org/10.1093/cercor/bhaa105

Garcés, P., Baumeister, S., Mason, L., Chatham, C. H., Holiga, S., Dukart, J., Jones, E. J. H., Banaschewski, T., Baron-Cohen, S., Bölte, S., Buitelaar, J. K., Durston, S., Oranje, B., Persico, A. M., Beckmann, C. F., Bougeron, T., Dell'Acqua, F., Ecker, C., Moessnang, C., Charman, T., Tillman, J., Murphy, D.G.M., Johnson, M., Loth, E., Brandeis, D., Hipp, J.F. & EU-AIMS LEAP group authorship. (2022). Resting state EEG power spectrum and functional connectivity in autism: A cross-sectional analysis. Molecular Autism, 13(1), 22. https://doi.org/10.1186/s13229-022-00500-x.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Revista eNeurobiología