Electroencefalografía en reposo en el trastorno del espectro autista: una revisión narrativa de patrones, conectividad y biomarcadores funcionales

Versiones

PDF

Palabras clave

EEG
TEA
Estado de reposo
Conectividad funcional
Biomarcadores

Cómo citar

Laurean-Quiroga, N., Navarro-Nolasco, D. A., Herrera-Covarrubias, D., Coria-Ávila, G. A., Toledo-Cárdenas, M. R., Aranda-Abreu, G. E., … Manzo-Denes, J. (2025). Electroencefalografía en reposo en el trastorno del espectro autista: una revisión narrativa de patrones, conectividad y biomarcadores funcionales. Revista eNeurobiología, 16(41). https://doi.org/10.25009/eb.v16i41.2652

Resumen

El trastorno del espectro autista (TEA) representa un desafío para la caracterización neurofisiológica debido a su heterogeneidad clínica. En este contexto, la electroencefalografía en reposo (rsEEG) ha emergido como una herramienta accesible para explorar patrones funcionales en población infantil. El objetivo de esta revisión fue sintetizar la evidencia disponible sobre hallazgos del rsEEG en niños y adolescentes con TEA y analizar los enfoques metodológicos empleados en la literatura reciente. Para ello, se realizó una búsqueda en la base de datos PubMed, restringida a estudios en humanos, con texto completo disponible y centrada en población infantil. Se identificaron 38 investigaciones empíricas que cumplieron con esos criterios. Además, se utilizó VOSviewer para efectuar un análisis de co-ocurrencias semánticas en títulos y resúmenes para agrupar la evidencia en cuatro núcleos temáticos: desarrollo neurofuncional, alteraciones en ritmos cerebrales, dinámica de conectividad funcional y algoritmos computacionales aplicados al diagnóstico. Los resultados muestran trayectorias atípicas en la maduración de la actividad oscilatoria y de la conectividad cerebral, disminución de la complejidad de las señales, reorganización funcional a nivel regional y disociaciones entre integración global e inestabilidad local. Asimismo, se documentan avances en el uso de modelos de aprendizaje profundo como redes convolucionales de memoria a corto y largo plazo y de grafos que han alcanzado alta precisión diagnóstica con rsEEG. En conclusión, la evidencia revisada consolida al rsEEG como herramienta prometedora para el desarrollo de biomarcadores en TEA, subrayando que su integración con inteligencia artificial optimiza la caracterización de la arquitectura cerebral atípica en el autismo.

https://doi.org/10.25009/eb.v16i41.2652
PDF

Citas

Wang, L., Wang, B., Wu, C., Wang, J., & Sun, M. (2023). Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. International Journal of Molecular Sciences, 24(3), 1819. https://doi.org/10.3390/ijms24031819

Milovanovic, M., & Grujicic, R. (2021). Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Frontiers in Psychiatry, 12, 686021. https://doi.org/10.3389/fpsyt.2021.686021

Das, S., Zomorrodi, R., Enticott, P. G., Kirkovski, M., Blumberger, D. M., Rajji, T. K., & Desarkar, P. (2022). Resting state electroencephalography microstates in autism spectrum disorder: A mini-review. Frontiers in Psychiatry, 13, 988939. https://doi.org/10.3389/fpsyt.2022.988939

Cellier, D., Riddle, J., Petersen, I., & Hwang, K. (2021). The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental Cognitive Neuroscience, 50, 100969. https://doi.org/10.1016/j.dcn.2021.100969

Chung, Y. G., Jeon, Y., Kim, R. G., Cho, A., Kim, H., Hwang, H., Choi, J., & Kim, K. J. (2022). Variations of Resting-State EEG-Based Functional Networks in Brain Maturation From Early Childhood to Adolescence. Journal of Clinical Neurology, 18(5), 581. https://doi.org/10.3988/jcn.2022.18.5.581

Angulo-Ruiz, B. Y., Ruiz-Martínez, F. J., Rodríguez-Martínez, E. I., Ionescu, A., Saldaña, D., & Gómez, C. M. (2023). Linear and Non-linear Analyses of EEG in a Group of ASD Children During Resting State Condition. Brain Topography, 36(5), 736-749. https://doi.org/10.1007/s10548-023-00976-7

Wang, L., Wang, B., Wu, C., Wang, J., & Sun, M. (2023). Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. International Journal of Molecular Sciences, 24(3), 1819. https://doi.org/10.3390/ijms24031819

NLM. (2025). National Library of Medicine. NIH. https://meshb.nlm.nih.gov/record/ui?ui=D015415

Angulo-Ruiz, B. Y., Ruiz-Martínez, F. J., Rodríguez-Martínez, E. I., Ionescu, A., Saldaña, D., & Gómez, C. M. (2023). Linear and Non-linear Analyses of EEG in a Group of ASD Children During Resting State Condition. Brain Topography, 36(5), 736-749. https://doi.org/10.1007/s10548-023-00976-7

Rea, H. M., Clawson, A., Hudac, C. M., Santhosh, M., Bernier, R. A., Earl, R. K., Pelphrey, K. A., Webb, S. J., Neuhaus, E., & the GENDAAR Consortium. (2023). Pubertal maturation and timing effects on resting state electroencephalography in autistic and comparison youth. Developmental Psychobiology, 65(7), e22415. https://doi.org/10.1002/dev.22415

Jaime, M., McMahon, C. M., Davidson, B. C., Newell, L. C., Mundy, P. C., & Henderson, H. A. (2016). Brief Report: Reduced Temporal-Central EEG Alpha Coherence During Joint Attention Perception in Adolescents with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 46(4), 1477-1489. https://doi.org/10.1007/s10803-015-2667-3

Proteau-Lemieux, M., Knoth, I. S., Davoudi, S., Martin, C. O., Bélanger, A. M., Fontaine, V., Côté, V., Agbogba, K., Vachon, K., Whitlock, K., Biag, H.M.B., Thurman, A. J., Rosenfelt, C., Tassone, F., Frei, J., Capano, L., Abbeduto, L., Jacquemont, S., Hessl, D., Hagerman, R. J., Schneider, A., Bolduc, F., Anagnostou, E. & Lippe, S. (2024). Specific EEG resting state biomarkers in FXS and ASD. Journal of Neurodevelopmental Disorders, 16(1), 53. https://doi.org/10.1186/s11689-024-09570-9

Wan, L., Li, Y., Zhu, G., Yang, D., Li, F., Wang, W., Chen, J., Yang, G., & Li, R. (2024). Multimodal investigation of dynamic brain network alterations in autism spectrum disorder: Linking connectivity dynamics to symptoms and developmental trajectories. NeuroImage, 302, 120895. https://doi.org/10.1016/j.neuroimage.2024.120895

Manzo Denes, J. (2019). Un segundo espectro del autismo: De la conducta a la neurona. eNeurobiología. https://doi.org/10.25009/eb.v10i23.2539

Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine, 9(1), 18. https://doi.org/10.1186/1741-7015-9-18

Heunis, T., Aldrich, C., Peters, J. M., Jeste, S. S., Sahin, M., Scheffer, C., & De Vries, P. J. (2018). Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder – a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Medicine, 16(1), 101. https://doi.org/10.1186/s12916-018-1086-7

Ghanbari, Y., Bloy, L., Christopher Edgar, J., Blaskey, L., Verma, R., & Roberts, T. P. L. (2015). Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism. Journal of Autism and Developmental Disorders, 45(2), 444-460. https://doi.org/10.1007/s10803-013-1915-7

Wang, J., Wang, X., Wang, X., Zhang, H., Zhou, Y., Chen, L., Li, Y., & Wu, L. (2020). Increased EEG coherence in long‐distance and short‐distance connectivity in children with autism spectrum disorders. Brain and Behavior, 10(10), e01796. https://doi.org/10.1002/brb3.1796

Zhao, J., Song, J., Li, X., & Kang, J. (2020). A study on EEG feature extraction and classification in autistic children based on singular spectrum analysis method. Brain and Behavior, 10(12), e01721. https://doi.org/10.1002/brb3.1721

Damiano-Goodwin, C. R., Woynaroski, T. G., Simon, D. M., Ibañez, L. V., Murias, M., Kirby, A., Newsom, C. R., Wallace, M. T., Stone, W. L., & Cascio, C. J. (2018). Developmental sequelae and neurophysiologic substrates of sensory seeking in infant siblings of children with autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 41-53. https://doi.org/10.1016/j.dcn.2017.08.005

Neuhaus, E., Lowry, S. J., Santhosh, M., Kresse, A., Edwards, L. A., Keller, J., Libsack, E. J., Kang, V. Y., Naples, A., Jack, A., Jeste, S., McPartland, J. C., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Van Horn, J. D., Pelphrey, K., Webb, S. J., & and the ACE GENDAAR Network. (2021). Resting state EEG in youth with ASD: Age, sex, and relation to phenotype. Journal of Neurodevelopmental Disorders, 13(1), 33. https://doi.org/10.1186/s11689-021-09390-1

Yoon, D., & Kim, E. Y. (2023). Sensory Processing and Autistic Traits: Mediation Effect of Frontal Alpha Asymmetry. Occupational Therapy International, 2023, 1-7. https://doi.org/10.1155/2023/5065120

Zeng, K., Kang, J., Ouyang, G., Li, J., Han, J., Wang, Y., Sokhadze, E. M., Casanova, M. F., & Li, X. (2017). Disrupted Brain Network in Children with Autism Spectrum Disorder. Scientific Reports, 7(1), 16253. https://doi.org/10.1038/s41598-017-16440-z

Hornung, T., Chan, W.-H., Müller, R.-A., Townsend, J., & Keehn, B. (2019). Dopaminergic hypo-activity and reduced theta-band power in autism spectrum disorder: A resting-state EEG study. International Journal of Psychophysiology, 146, 101-106. https://doi.org/10.1016/j.ijpsycho.2019.08.012

Mash, L. E., Keehn, B., Linke, A. C., Liu, T. T., Helm, J. L., Haist, F., Townsend, J., & Müller, R.-A. (2020). Atypical Relationships Between Spontaneous EEG and fMRI Activity in Autism. Brain Connectivity, 10(1), 18-28. https://doi.org/10.1089/brain.2019.0693

Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2007). Resting State Cortical Connectivity Reflected in EEG Coherence in Individuals With Autism. Biological Psychiatry, 62(3), 270-273. https://doi.org/10.1016/j.biopsych.2006.11.012

Carter Leno, V., Tomlinson, S. B., Chang, S.-A. A., Naples, A. J., & McPartland, J. C. (2018). Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Scientific Reports, 8(1), 11982. https://doi.org/10.1038/s41598-018-30445-2

Kakuszi, B., Szuromi, B., Tóth, M., Bitter, I., & Czobor, P. (2024). Alterations in resting-state gamma-activity is adults with autism spectrum disorder: A High-Density EEG study. Psychiatry Research, 339, 116040. https://doi.org/10.1016/j.psychres.2024.116040

Jaime, M., McMahon, C. M., Davidson, B. C., Newell, L. C., Mundy, P. C., & Henderson, H. A. (2016). Brief Report: Reduced Temporal-Central EEG Alpha Coherence During Joint Attention Perception in Adolescents with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 46(4), 1477-1489. https://doi.org/10.1007/s10803-015-2667-3

Pierce, S., Kadlaskar, G., Edmondson, D. A., McNally Keehn, R., Dydak, U., & Keehn, B. (2021). Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: An EEG-MRS study. Journal of Neurodevelopmental Disorders, 13(1), 5. https://doi.org/10.1186/s11689-020-09351-0

Malaia, E., Bates, E., Seitzman, B., & Coppess, K. (2016). Altered brain network dynamics in youths with autism spectrum disorder. Experimental Brain Research, 234(12), 3425-3431. https://doi.org/10.1007/s00221-016-4737-y

Malaia, E. A., Ahn, S., & Rubchinsky, L. L. (2020). Dysregulation of temporal dynamics of synchronous neural activity in adolescents on autism spectrum. Autism Research, 13(1), 24-31. https://doi.org/10.1002/aur.2219

Tang, T., Li, C., Zhang, S., Chen, Z., Yang, L., Mu, Y., Chen, J., Xu, P., Gao, D., Li, F., He, B., & Zhu, Y. (2024). A hybrid graph network model for ASD diagnosis based on resting-state EEG signals. Brain Research Bulletin, 206, 110826. https://doi.org/10.1016/j.brainresbull.2023.110826

Xu, Y., Yu, Z., Li, Y., Liu, Y., Li, Y., & Wang, Y. (2024). Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN–LSTM model. Computer Methods and Programs in Biomedicine, 250, 108196. https://doi.org/10.1016/j.cmpb.2024.108196

Kang, J., Mao, W., Wu, J., Geng, X., & Li, X. (2025). TDCS Modulates Brain Functional Networks in Children with Autism Spectrum Disorder: A Resting-State EEG Study. Journal of Integrative Neuroscience, 24(3), 27314. https://doi.org/10.31083/JIN27314

Pillai, A. S., McAuliffe, D., Lakshmanan, B. M., Mostofsky, S. H., Crone, N. E., & Ewen, J. B. (2018). Altered task‐related modulation of long‐range connectivity in children with autism. Autism Research, 11(2), 245-257. https://doi.org/10.1002/aur.1858

Scheffler, A. W., Telesca, D., Sugar, C. A., Jeste, S., Dickinson, A., DiStefano, C., & Şentürk, D. (2019). Covariate‐adjusted region‐referenced generalized functional linear model for EEG data. Statistics in Medicine, 38(30), 5587-5602. https://doi.org/10.1002/sim.8384

Schmitt, L. M., Li, J., Liu, R., Horn, P. S., Sweeney, J. A., Erickson, C. A., & Pedapati, E. V. (2022). Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Molecular Autism, 13(1), 47. https://doi.org/10.1186/s13229-022-00527-0

Susam, B. T., Riek, N. T., Beck, K., Eldeeb, S., Hudac, C. M., Gable, P. A., Conner, C., Akcakaya, M., White, S., & Mazefsky, C. (2022). Quantitative EEG Changes in Youth With ASD Following Brief Mindfulness Meditation Exercise. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2395-2405. https://doi.org/10.1109/TNSRE.2022.3199151

He, C., Cortes, J. M., Kang, X., Cao, J., Chen, H., Guo, X., Wang, R., Kong, L., Huang, X., Xiao, J., Shan, X., Feng, R., Chen, H., & Duan, X. (2021). Individual‐based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Human Brain Mapping, 42(10), 3282-3294. https://doi.org/10.1002/hbm.25434

Cañigueral, R., Palmer, J., Ashwood, K. L., Azadi, B., Asherson, P., Bolton, P. F., McLoughlin, G., & Tye, C. (2022). Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention‐Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD. Journal of Child Psychology and Psychiatry, 63(7), 745-761. https://doi.org/10.1111/jcpp.13514

Lawrence, K. E., Hernandez, L. M., Bowman, H. C., Padgaonkar, N. T., Fuster, E., Jack, A., Aylward, E., Gaab, N., Van Horn, J. D., Bernier, R. A., Geschwind, D. H., McPartland, J. C., Nelson, C. A., Webb, S. J., Pelphrey, K. A., Green, S. A., Bookheimer, S. Y., Dapretto, M., & GENDAAR Consortium. (2020). Sex Differences in Functional Connectivity of the Salience, Default Mode, and Central Executive Networks in Youth with ASD. Cerebral Cortex, 30(9), 5107-5120. https://doi.org/10.1093/cercor/bhaa105

Garcés, P., Baumeister, S., Mason, L., Chatham, C. H., Holiga, S., Dukart, J., Jones, E. J. H., Banaschewski, T., Baron-Cohen, S., Bölte, S., Buitelaar, J. K., Durston, S., Oranje, B., Persico, A. M., Beckmann, C. F., Bougeron, T., Dell'Acqua, F., Ecker, C., Moessnang, C., Charman, T., Tillman, J., Murphy, D.G.M., Johnson, M., Loth, E., Brandeis, D., Hipp, J.F. & EU-AIMS LEAP group authorship. (2022). Resting state EEG power spectrum and functional connectivity in autism: A cross-sectional analysis. Molecular Autism, 13(1), 22. https://doi.org/10.1186/s13229-022-00500-x.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2025 Revista eNeurobiología